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Abstract

It is well known that the Bernoulli numbers Bn hold a great arithmetical importance,
due to their recurrent appearance in Number theory. In fact, Bernoulli numbers classi-
cally appear in power series expansions of trigonometric functions. They also are related
to the Riemann ζ-function at negative integers.

One might also be familiar with the generalised Bernoulli numbers, which —in the same
fashion— are related to the special values of the Dirichlet L-series. The Eisenstein-
Kronecker numbers e∗a,b are an elliptic analogue of the generalised Bernoulli numbers, in
the case of an imaginary quadratic field. They are, in this sense, related to the special
values of Hecke L-series on imaginary quadratic fields.

In this thesis, we study the algebraic properties of the numbers e∗a,b. We will follow
Bannai and Kobayashi’s paper [BK+10] and show that the two-variable generating func-
tion of these numbers (which is the elliptic analogue of the cotangent function for the
Bernoulli numbers) belongs to a canonical class of theta functions, called the reduced
theta functions. We will then introduce Mumford’s theory of algebraic theta functions
in order to study the algebraic properties of e∗a,b.





Zusammenfassung

Es ist bekannt, dass die Bernoulli-Zahlen Bn eine große arithmetische Bedeutung haben,
da sie in der Zahlentheorie immer wieder vorkommen. Tatsächlich tauchen die Bernoulli-
Zahlen klassischerweise in Potenzreihenentwicklungen trigonometrischer Funktionen auf.
Sie sind auch mit der Riemann ζ-Funktion bei negativen ganzen Zahlen verwandt.

Man könnte auch mit den generalisierten Bernoulli-Zahlen vertraut sein, die — auf die
gleiche Weise— mit den besonderen Werten der Dirichlet-L-Serie zusammenhängen. Die
Eisenstein-Kronecker-Zahlen e∗a,b sind ein elliptisches Analogon zu den generalisierten
Bernoulli-Zahlen, im Falle eines imaginären quadratischen Körpers. Sie sind in diesem
Sinne mit den speziellen Werten der Hecke L-Reihe auf imaginären quadratischen Kör-
pern verwandt.

In dieser Arbeit untersuchen wir die algebraischen Eigenschaften der Zahlen e∗a,b. Wir
werden der Arbeit [BK+10] von Bannai und Kobayashi folgen und zeigen, dass die
Zwei-Variablen-Erzeugende Funktion dieser Zahlen (die das elliptische Analogon der
Kotangensfunktion für die Bernoulli-Zahlen ist) zu einer kanonischen Klasse von Theta-
Funktionen, den so genannten reduzierten Theta-Funktionen, gehört. Wir werden dann
Mumfords Theorie der algebraischen Thetafunktionen vorstellen, um die algebraischen
Eigenschaften von e∗a,b zu untersuchen.
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1
Introduction

“God exists since mathematics is consistent, and the Devil exists since we
cannot prove it.”

André Weil

1.1. Motivation

Let χ be a Dirichlet character of conductor fχ = n. Let b ∈ N such that

χ(−k) = (−1)bχ(k).

Then, the Dirichlet L-series is given by

L(b, χ) ∶=
∞

∑
k=1

χ(k)

kb
=

1

2
∑

k∈(Z/nZ)×
χ(k) ∑

j∈2πiZ
j≠− 2πi

n
k

1

(j n
2πi + k)

b

=
(2πi)b

2nb
∑

k∈(Z/nZ)×
χ(k)e∗b (

2πi

n
k) where e∗b (

2πi

n
k) = ∑

j∈2πiZ
j≠− 2πi

n
k

1

(k + j 2πi
n k)

b
.

Now, for all m ∈ Z, define the 2πim-periodic function:

Gm ∶ CÐÐ→ C

z z→
ez

ez − 1

Then, it is not hard to see that for all z′ ∈ C:

Gm(z + z′) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1
z +∑

b≥1

(−1)b−1zb−1e∗b (z
′) if z′ = 2πim

∑
b≥1

(−1)b−1zb−1e∗b (z
′) otherwise.

Gm is said to be a generating function for the numbers e∗b . Observe that this is not a
rational function. However, algebraically, one has an isomorphism of algebraic groups

C/2πiZ
∼
ÐÐ→ C×

z z→ T = ez
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Now, if z′ = q ∈ 2πiZ ⊗Q, then under the above isomorphism, the generating function
Gm(z + q) near z = 0 corresponds to a rational function

t

t − 1

Thus, by choosing an embedding i ∶ Q ↪Ð→ C, one gets that the numbers e∗b (q) ∈ Q are
algebraic.

1.2. Objective

The idea of Bannai and Kobayashi in [BK+10] was to reproduce the same reasoning
for an imaginary quadratic field, i.e. define a two variable generating function for the
Eisenstein-Kronecker numbers e∗a,b, which are special values of Hecke L-series attached
to a Hecke character χ on an imaginary quadratic field K.

Given an elliptic curve E(C) with CM by the ring of integers of an imaginary quadratic
field K, the generating function of the Eisenstein-Kronecker numbers e∗a,b is a mero-
morphic function Θ, known as the Kronecker theta function. We will show that this
generating function is a canonical meromorphic section of the Poincaré bundle of an
elliptic curve, then; under complex multiplication; that its Laurent series has rational
coefficients. This shows the algebraicity of the Eisenstein-Kronecker numbers.

1.3. Scope

The subtlety of this approach resides in the following observation: remark that in §1.1,
one considers the algebraic model of C/2πiZ, and under this uniformisation, associates a
rational function to the generating function. Then, one would have to consider a transla-
tion operator that would preserve the algebraicity; an algebraic translation. This is done
through Mumford’s theory of algebraic theta function, for general theta functions on an
algebraic variety A(k); over a general ground field k.

Let V be a g-dimensional complex vector space. Mumford’s theory of algebraic theta
functions allows (among other things) the study of sections s of line bundles at any tor-
sion point. The translation operator in §4.1.10 preserves the reducedness of the theta
functions, and; through the isomorphism (4.3)

t∗wL ≅ L(H,χ ⋅ αw);

determines the reduced theta function corresponding to the section t∗ws up to a con-
stant multiple. This constant however, depends on the choice of the above isomorphism.
Moreover, the translation operator considered in §4.1.10 also depends on a semi-character
χ̃ ∶ V Ð→ C. Mumford’s theory allows an algebraic construction of the translation op-
erator that canonically determines such an isomorphism, which in turn, determines the

2 Universität Regensburg, Department of Mathematics, 2020



The generating function of Eisenstein-Kronecker numbers

reduced theta function corresponding to the section t∗ws up to an n-th root of unity.

Finally, Figure 1.1 attempts to show “the big picture” of the thesis:

e∗a,b as special
values of the
Eisenstein-

Kronecker-Lerch
series K∗

a,b

Algebraic
theta functions

Meromorphic
sections of
line bundles Reduced

theta
functions

Translation
of

reduced
theta

functions

The
generating
function
of the e∗a,b

Eisenstein’s
theory of elliptic

functions

Elliptic
func-
tions

Eisenstein
series

Eisenstein-
Kronecker-

Lerch
series K∗a,b

Eisenstein-
Kronecker
numbers
e∗a,b

e∗a,b as special
values of Hecke
L-functions
on imaginary
quadratic fields

Applications

p-integrality
of the e∗a,b

p-adic
interpolation
of special
values

of Hecke
L-functions

Applications

Algebraicity
results:

In the case of
a CM elliptic

curve: Damerell’s
theorem.

Figure 1.1.: Conceptual summary of the thesis

1.4. Outline

This thesis is separated into 5 chapters, with two main parts. Each chapter provides
applications and general results to illustrate the work done, and give some additional
context and insight.

InChapter 2, we introduce the Eisenstein-Kronecker series from elliptic functions, which
have been thoroughly studied by Eisenstein and Kronecker in the late 19th century. The
main source of this section is the very complete book from Prof. André Weil [Wei76]. We
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start by introducing Eisenstein’s one variable “trigonometric functions” and use his meth-
ods to define the Eisenstein-Kronecker-Lerch series. We relate the most relevant content
with modern terminology and introduce in the end the Eisenstein-Kronecker numbers.
The main result of this section is proposition 2.3.3 which shows analytic continuation
and the functional equation of the Eisenstein-Kronecker-Lerch K∗

a . This is a crucial part
in the proof of the main theorem (theorem 4.3.1) of this thesis.

In Chapter 3, we introduce Hecke characters: L-functions usually arise as the ana-
lytic continuation of an L-series; first defined as a Dirichlet series, then expanded into
an Euler product indexed by primes. Hence, Hecke characters were once introduced
by Hecke in order to establish the analytic continuation (and functional equation) of a
Dirichlet series for a general number field K. We then introduce algebraic Hecke char-
acters, which are mainly motivated by complex multiplication. Here is a modest and
rough motivation: The main theorem of complex multiplication for an abelian variety
A (theorem 3.3.5 in the case of an elliptic curve); when restated in Galois theoretic for-
mulation; is nicely tied to the l-adic representations of Gal(Kab/K) on the l-adic Tate
module Tl(A). This motivates the idèlic formulation of Hecke characters and suggests
that such objects should be restrictions of some homomorphisms of algebraic groups. (§7
of the very excellent paper [ST68] provides a more complete and detailed motivation).
The main theorem of this section is theorem 3.2.12 where we relate the Hecke L-series
to the Eisenstein-Kronecker-Lerch series K∗

a . In the case of a CM Elliptic curve, we
use complex multiplication and Deuring’s theorem B.3.10 to relate the special values of
the L-function attached to a CM elliptic curve to the Eisenstein-Kronecker numbers e∗a,b
through the functional equation and analytic continuity of the Hecke L-series. We end
the section by presenting the two main conjectures related to special values of L-function
of elliptic curves.

Chapter 4 is somehow the core of the thesis. We introduce here a different approach
to study the special values of Hecke L-functions on imaginary quadratic fields, through
the theory of theta functions. We review the theory of line bundles and reduced theta
functions (which are, in a sense, some sort of canonical theta functions) over abelian
varieties. Then we define the Kronecker Theta function Θ as a reduced theta function
associated to the Poincaré bundle of an elliptic curve, which is nothing but a line bundle
on the abelian variety E × E∨ (this is possible because elliptic curves -under complex
uniformisation- are self dual). We define a theta-translation operator that preserves the
reducedness and show that (theorem 4.3.1): under this translation, the Kronecker theta
function Θw,w′(z, z

′) is a two-variable generating function of the Eisenstein-Kronecker
numbers e∗a,b(w,w

′). The main ingredient in the proof of this theorem is Kronecker’s
theorem 4.2.10, which relates (in the case of an elliptic curve) the Kronecker theta func-
tion Θ(z, z′) to the Eisenstein-Kronecker-Lerch series K1(z, z

′,1).

Chapter 5 is devoted to the study of the algebraicity of the Eisenstein-Kronecker num-
bers. Being related to critical values of Hecke L-functions on imaginary quadratic fields,

4 Universität Regensburg, Department of Mathematics, 2020
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Damerell proved their algebraicity in [Dam70]. We adapt his proof to our setting and
present his result (theorem 5.1.1) in the first part of this chapter. In the second, we
introduce Mumford’s theory of algebraic theta functions. We first give an overview of
the general theory for abelian varieties over a general field. Mumford’s theory allows an
algebraic construction of the translation operator that; given a section sD; canonically
determines the reduced theta function corresponding to its translation t∗ws up to an n-th
root of unity, while preserving the algebraicity of the coefficients. Applied in the case
A = E×E∨; where E(C) is a CM elliptic curve; the generating function of the Eisenstein-
Kronecker numbers e∗a,b(w,w

′) is a reduced theta function Θ, with an algebraic divisor.
Thus, Mumford’s theory shows that; for rational torsion points w,w′ ∈ Γ⊗Q; the num-
bers e∗a,b(w,w

′) are algebraic.

Appendix A and B provide additional background about most of the arguments used
in the four chapters. Appendix A presents most of the analytical tools used in chap-
ter 2 (Poisson summation, Fourier analysis on the torus, convergence results...) and some
additional results on elliptic functions. Appendix B provides a relatively sufficient al-
gebraic background and interpretation of results treated in the thesis. The first part
reviews most of the implicit results about class field theory used in chapters 3, 4 and
5 (most of the results are taken from the excellent lecture notes [Mil08b]), the second
describes abelian varieties algebraically (here again, we solely rely on Mumford’s book
[DM70]. Some proofs/results were propositions/exercises I have done for my previous
courses of Algebraic Geometry). The last part gives a general framework on Elliptic
curves, that helps understanding most of the results in chapter 3 and chapter 5.

Universität Regensburg, Department of Mathematics, 2020 5
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2
Eisenstein and Kronecker’s theory of

elliptic functions

This section is intended to give a relatively detailed introduction about the study of the
Eisenstein-Kronecker-Lerch. Most of this work is marvellously done in [Wei76].

2.1. Eisenstein’s trigonometric functions

Let us consider the series

εn(z) ∶=
+∞

∑
k=−∞

1

(z + k)n

Where n ∈ N>0. Let us at first consider the case where n ≥ 2: We first rewrite the series
as the following

+∞

∑
k=−∞

1

(z + k)n
=
+∞

∑
k=1

1

(z − k)n
+
+∞

∑
k=1

1

(z + k)n
+

1

zn

We treat the first series on the LHS, the other one is similar. Let z ∈ C ∖Z, there exists
an N ∈ N such that ∣z∣ < N −1. We consider the compact sets KN ∶= {z ∈ C , ∣z∣ ≤ N}∖N.
Then for k ≥ 2N and a fixed z ∈KN one has

∣z∣ ≤ N ≤
k

2
⇒ ∣z − k∣ ≥ k − ∣z∣ ≥ k −

k

2
=
k

2

Hence one gets
1

∣z − k∣n
≤

2n

kn

The above series is absolutely convergent on each compact set that does not contain an
integer, thus εn(z) converges normally to meromorphic functions for n ≥ 2.

For n = 1, we consider a special method of summation, namely

ε1(z) = lim
N→∞

N

∑
k=−N

1

z + k
(2.1)

Now observe that
N

∑
k=−N

1

(z + k)
=

1

z
+

N

∑
k=1

1

(z + k)
+

1

(z − k)
=

1

z
+ 2z

N

∑
k=1

1

(z2 + k2)
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On the other hand, for a fixed z ∈KN

∣
1

(z2 + k2)
∣ ≤

4

k2

which converges absolutely. Thus, by the same reasoning as above, we get normal con-
vergence of the series to a meromorphic function ε1(z).

Now uniform convergence allows taking term-by-term derivatives, this shows that for
all n ≥ 1

d

dz
εn = −nεn+1(z) (2.2)

And one sees that

ε1(z + 1) =
1

z + 1
+ lim
N→∞

N

∑
k=1

(
1

z + 1 + k
+

1

z + 1 − k
)

=
1

z + 1
+ lim
N→∞

(
N

∑
k=1

1

z + 1 + k
+

N

∑
k=1

1

z + −k + 1
)

=
1

z + 1
+ lim
N→∞

(
N+1

∑
k=2

1

z + k
+
N−1

∑
k=0

1

z − k
)

=
1

z + 1
+ lim
N→∞

(
1

z
−

1

z + 1
+

1

z +N + 1
−

1

z −N
+

N

∑
k=1

(
1

z + k
+

1

z − k
))

=
1

z
+ lim
N→∞

(
N

∑
k=1

1

z + k
+

1

z − k
) = ε1(z)

Hence εn is 1-periodic for all n ≥ 1. Recall that the cotangent function cot(πz) =
cos(πz)
sin(πz)

is an odd, meromorphic function, with countably many poles (at each m ∈ Z). From the
power series expansion of the sine and cosine functions, one clearly sees that

cot(πz) =
1

π(z − n)
+∑
m

am(z − n)m

Moreover, it satisfies the well known trigonometric formula (called the double angle
formula)

cot(2θ) =
cot(θ)2 − 1

2 cot(θ)
(2.3)

Now, let g(z) ∶= π cot(πz), and let f be any other odd meromorphic function with
principal part 1

(z−m)
at each m ∈ Z. Then the function h(z) ∶= f(z) − g(z) is odd and

satisfies
⎧⎪⎪
⎨
⎪⎪⎩

h(z) = 2h(2z) − h (1+2z
2

)

h(0) = 0
(2.4)

8 Universität Regensburg, Department of Mathematics, 2020
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By the maximum principle theorem, there exists a z0 ∈ B(0,2) such that ∣h(z)∣ < ∣h(z0)∣

for some z ∈ B(0,2). In particular,

∣h(
z0

2
) + h(

1 + z0

2
)∣ ≤ ∣h(

z0

2
)∣ + ∣h(

1 + z0

2
)∣ < 2∣h(z0)∣

which contradicts (2.4). Hence, h must be identically zero and the equation (2.3) com-
pletely characterises the cotangent function. Now as seen in (2.1), ε1 is odd and mero-
morphic with principal part 1

z−m at each integer m. Moreover, if we denote by SN the
partial sum of ε1 then

Sk(z) + Sk (z +
1

2
) =

1

z
+

1

z + 1
2

+
N

∑
k=1

1

(z + k)
+

1

(z − k)
+

N

∑
k=1

1

(z + 1
2 + k)

+
1

(z + 1
2 − k)

=
1

z
+

2

2z + 1
+

2N

∑
k=2

2

(2z + 1 + k)
+

2N

∑
k=2

2

(2z + 1 − k)

=
2

z
+

2

2z + 2N + 1
+ 2

2N

∑
k=1

1

(2z + k)
−

1

(2z − k)
= 2S2N(2z) +

2

2z + 2N + 1

This implies that

ε1(z) + ε1 (z +
1

2
) = 2ε1(2z)

And finally
ε1(z) = π cot(πz).

Hence, from the double angle formula (2.3) one easily derives an addition formula for ε1,
namely

ε1(z +w) =
ε1(z)ε1(w) − π2

ε1(z) + ε1(w)
(2.5)

One deduces several known partial fraction series from ε1 by (2.2) as follows:

ε2(z) = ∑
k∈Z

1

(z + k)2
=

π2

sin2 πz

ε3(z) = ∑
k∈Z

1

(z + k)3
= π3 cotπz

sin2 πz

= ε1(z)ε2(z) (2.6)

As well as the known identify (easily deduced from (2.3))
π

sinπz
= π cotπz + π tan

πz

2
= π cotπz + π cot

πz

2
− 2π cotπz

= ε1(z) +
∞

∑
k=0

4z

(2k + 1)2 − z2
=

1

z
+

∞

∑
k=1

(−1)k
2z

z2 − k2

Or more elegantly
π

sinπz
= ∑
k∈Z

(−1)k

z + k
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The generating function of Eisenstein-Kronecker numbers

For further use, we will develop a slightly more general formula from (2.6) as follows:
First, notice that from the differential equation (cot z)′ = −1− cot(z)2 and using the fact
ε2 = −ε

′
1 from (2.2), one deduces that

ε2(z) = ε
2
1(z) + π

2 (2.7)

Now, by (2.6)

ε3(z +w) = ε2(z +w)ε1(z +w) = ε2(z +w)
ε1(z)ε1(w) − π2

ε1(z) + ε1(w)

⇔ 2ε3(z +w)(ε1(z) + ε1(w)) = ε2(z +w) (2ε1(z)ε1(w) − 2π2)

= ε2(z +w) (2ε1(z)ε1(w) + ε1(z)
2 − ε2(z) + ε1(w)2 − ε2(w))

= ε2(z +w) (ε1(z) + ε1(w))2 − ε1(z)ε2(z +w) − ε1(w)ε2(z +w)

Hence, by combining (2.5) and (2.7) once more, we finally get the addition formula

2ε3(z +w)(ε1(z) + ε1(w)) = ε2(z)ε2(w) − ε1(z)ε2(z +w) − ε1(w)ε2(z +w) (2.8)

We conclude this section by another interesting expression of ε1 that can be obtained as
follows: Consider the function f(z) = (z2 −k2)−1 on the unit disk, given by the following
power series expansion

2

z2 − k2
= −

2

k2

∞

∑
n=0

(
z

k
)

2n

Then, the (2n − 2)th term of its Taylor series is −2
k2n . Since the series ∑

k≥1
2(z2 − k2)−1

converges uniformly on the unit disk, its (2n − 2)th Taylor coefficient is nothing but

−2∑
k≥1

1

k2n
= 2ζ(2n)

Now from the Taylor expansion of the cotangent function at 0, one gets that

ε1(z) =
1

z
−

∞

∑
k=1

q2kz
2k−1, where z ∈ S1 ∖ {0}, q2k = 2ζ(2k) (2.9)

=
1

z
−

∞

∑
k=1

(2π)2k

(2k!)
B2kz

2k−1

Differentiating n times, we get the power series expansion of εn

εn(z) −
1

zn
= (−1)n

∞

∑
k=1

(
2k − 1

n − 1
)
(2π)2k

(2k!)
B2k (2.10)

In particular, comparing coefficient near z = 0 in (2.9) we obtain for n ≥ 1 the famous
identity:

ζ(2n) = (−1)n−1 (2π)
2n

2(2n!)
B2n
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The generating function of Eisenstein-Kronecker numbers

2.2. Eisenstein’s elliptic functions

In the following, we consider two complex variables. In particular, consider a fundamental
pair of periods ω1, ω2, i.e. non-zero complex numbers such that I(τ) > 0, τ ∶= ω1

ω2
. They

define a lattice in C that will be denote Γ = ω1Z⊕ ω2Z.

2.2.1. Eisenstein series

Definition 2.2.2 (Eisenstein series). Let w ∈ Γ,w =m1ω1+m2ω2. For a positive integer
n > 0, we define the Eisenstein series to be the double series

En(z,ω1, ω2) ∶= ∑e
m1,m2

1

(z +m1ω1 +m2ω2)k
(2.11)

where ∑e is known as the Eisenstein summation and is defined as

∑e
m1,m2

= ∑e
m2

⎛

⎝
∑e
m1

⎞

⎠
= lim
N→∞

N

∑
m2=−N

⎛

⎝
lim
M→∞

M

∑
m1=−M

⎞

⎠

The seriesEn(z,ω1, ω2) converges normally on the domainsD ∶= C ∖ ⋃
m1,m2

(−m1ω1 −m2ω2)

for n ≥ 3. Indeed, let us fix some z in some compact set inside D.
For w ∈ Γ ∩C ∖B(0,

∣z∣
2 ), one has ∣w∣ ≥

∣z∣
2 , thus

1

∣w + z∣k
≤

1

∣∣w∣ − ∣z∣∣k
≤

1

(1 − 1
2)
k∣w∣k

=
2k

∣w∣k

The result follows from Lemma A.1.1.

Now for k ≥ 3, the Eisenstein summation is not needed, as it coincides with the regular
sum over the lattice Γ, namely

En(z,ω1, ω2) = ∑e
m1,m2

1

(z +m1ω1 +m2ω2)k
=

∞

∑
m1,m2=−∞

1

(z +m1ω1 +m2ω2)k

= ∑
w∈Γ

1

(z +w)k
=∶ En(z,Γ)

Moreover, En is Γ-periodic, with the period lattice (ω1, ω2). Indeed, on has for all integers
a, b ∈ Z

En(z + aω1 + bω2, ω1, ω2) = En(z,ω1, ω2)

For the case where n = 1,2 a little bit of work is needed. If u, v are two other generators
of Γ, i.e. w = µu+ νv =m1ω1 +m2ω2, then the summation can be made more explicit by
using εn. Pose

ξ =
z

u
, τ =

v

u

Universität Regensburg, Department of Mathematics, 2020 11
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then one sees that

∑e
µ

1

z + µu + νv
= ∑e

µ

1

(un)( zu +
νv
u + µ)n

= u−nεn (
z + νv

u
)

hence equation (2.11) becomes

En(z, u, v) = u
−n
∑e
ν

εn (
z + νv

u
) = u−n∑e

ν

εn(ξ + ντ). (2.12)

• We start by the case n = 2:

∑e
(z +w)−2 = u−2

∑e
ν

ε2(ξ + ντ)

Recall that from (2.2)

εn(ξ) = −
1

n − 1

d

dz
εn−1(ξ) =

1

(n − 1)(n − 2)
(
d

dξ
)

2

εn−2(ξ) = ⋅ ⋅ ⋅ =
(−1)n−1

(n − 1)!
(
d

dξ
)
n−1

ε1(ξ)

One also has from the previous section that

ε1(z) = π cotπz = π
cosπz

sinπz
= π

eiz + e−iz

2
⋅

2i

eiz − e−iz
= πi

eiz + e−iz

eiz − e−iz

Hence, applying the substitution from above, and by putting ẑ = e2πiξ, q = eiπτ , one
gets

ε1(ξ + ντ) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

πi ( q
2ν ẑ+1
q2ν ẑ−1

) = πi − 2πi ( 1
1−q2ν ẑ

) if ν > 0

πi ( q
−2ν ẑ+1
q−2ν ẑ−1

) = −πi + 2πi ( 1
1−q2ν ẑ−1 ) if ν < 0

(2.13)

and by (2.2)

εn(ξ + τν) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(−2πi)n

(n−1)!
(ẑ d

dẑ
)
n−1

( 1
1−q2ν ẑ

) if ν > 0

(2πi)n

(n−1)!
(ẑ d

dẑ
)
n−1

( 1
1−q2ν ẑ−1 ) if ν < 0

Now, since ∣q∣ < 1 and for large enough ν > 0 such that ∣q2ν ẑ∣ < 1 we get

εn(ξ + τν) =
(−2πi)n

(n − 1)!
(ẑ

d

dẑ
)
n−1

(
∞

∑
k=1

q2νkẑk) =
(−2πi)n

(n − 1)!

∞

∑
k=1

kn−1q2νkẑk

and taking the absolute value, one gets

∣εn(ξ + τν)∣ ≤ C(ẑ)∣q∣2ν where C(ẑ) does not depend on ν.

Similarly, for ν < 0, replacing by −ν one gets for large enough ν such that ∣q2ν ẑ−1∣ < 1

εn(ξ − τν) =
(2πi)n

(n − 1)!
(ẑ

d

dẑ
)
n−1

(
∞

∑
k=1

q2νkẑk) =
(−2πi)n

(n − 1)!

∞

∑
k=1

kn−1q2νkẑ−k.
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The generating function of Eisenstein-Kronecker numbers

Now for all z ∈K ⊂ {z ∈ C ∖Z ∣ ∣q∣ < ẑ < 1
∣q∣}, the following series becomes

En(z, u, v) = u
−nεn(ξ) +

(−1)n

(n − 1)!
(

2πi

u
)
n ∞

∑
ν=1

∞

∑
k=1

kn−1q2νk(ẑk + (−1)nẑ−k) (2.14)

which converges absolutely and uniformly for n ≥ 2 inside each K.

• For n = 1:

∑e
(z +w)−1 = u−1

∑e
ν

ε1(ξ + ντ) = u
−1ε1 (ξ) + u

−1
+∞

∑
ν=1

ε1(ξ + ντ) + ε1(ξ − ντ)

Hence, by adopting the same notations as above once again, one gets

ε1(ξ + ντ) + ε1(ξ − ντ) = πi(
q2ν ẑ + 1

q2ν ẑ − 1
+
q−2ν ẑ + 1

q−2ν ẑ − 1
)

= −2πi(
1

1 − q2ν ẑ
+

1

q2ν ẑ−1
)

and by the same reasoning, for large ν

∣
1

1 − q2ν ẑ
+

1

q2ν ẑ−1
∣ ≤ ∣

1

1 − ∣q2ν ẑ∣
∣ + ∣

1

1 − ∣q2ν ẑ−1∣
∣ ≤ C(ẑ)∣q∣2ν

which proves convergence for all n ≥ 1.

2.2.3. Power series expansion

The nature of convergence of the Eisenstein series allows us in particular to take term-
by-term derivatives and one easily obtains the very useful identity

d

dz
En = −nEn+1 (2.15)

One can (as in the case of trigonometric functions) use (2.15) to get a power series
expansion of En. To do so, observe first that E1(z, u, v) is an odd function in z. One
sees that

E1(z, u, v) =
E1(z, u, v) −E1(−z, u, v)

2
=

1

z
+

1

2
∑e
µ,ν≠0

1

z + µu + νv
−

1

−z + µu + νv

=
1

z
+

1

2
∑e
µ,ν≠0

1

z +w
+

1

z −w

Taking ∣z∣ < ∣µu + νv∣ = ∣w∣ for all µ, ν ∈ Z∗, and expanding (z +w)−1 and (z −w)−1 into
power series in z, one sees that the terms with odd index cancel and

E1(z, u, v) =
1

z
− ∑e
µ,ν≠0

(
∞

∑
k=1

z2k−1

w2k
)
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Now, the power series being absolutely convergent, one writes

E1(z, u, v) =
1

z
−

∞

∑
k=1

⎛

⎝
∑e
µ,ν≠0

1

w2k

⎞

⎠
z2k−1

Put
E1(z, u, v) −

1

z
= −

∞

∑
k=1

e2kz
2k−1

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2 = ∑e
µ,ν≠0

1
w2 k = 1

e2k = ∑
µ,ν≠0

1
w2k k ≥ 2

e2k+1 = 0 k ≥ 1

By differentiating n times, one gets the power series expansion for En

En(z, u, v) −
1

zn
= (−1)n

∞

∑
k=1

(
2k − 1

n − 1
)e2kz

2k−n (2.16)

where e2k is the value of E2k(z, u, v) −
1
z2k near 0.

Observe that, from (2.10) and adopting the notation from §2.2.1, the 2k-th coefficient of
ε2k(ξ) −

1
ξ2k near 0 is

q2k =
(2π)2k

(2k)!
B2k

Thus, near z = 0 (ξ = 0 and ẑ = 1), one gets by (2.14)

e2k = u
−2k (ε2k(ξ) −

1

ξ2k
) + 2u−2k (2πi)2k

(2k − 1)!

∞

∑
d=1

d2k−1q2d
∞

∑
ν=0

(q2d)ν

=
(−1)k

(2k)!
(

2πi

u
)

2k

B2k +
2

(2k − 1)!
(

2πi

u
)

2k ∞

∑
d=1

d2k−1q2d(1 + q2d + q4d + . . . )

and finally

e2k =
2

(2k − 1)!
(

2πi

u
)

2k

(
(−1)k

4k
B2k +

∞

∑
d=1

σ2k−1(d)q
2d)

where
σ2k−1(d) = ∑

d∣ν

d2k−1.

Remark 2.2.4. In a more modern terminology, one might write

E2(z, u, v) − e2 =
1

z2
+ ∑e
µ,ν≠0

1

(z + µu + νv)2
−

1

(µu + νv)2
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By absolute convergence (2.14) one does not need the Eisenstein summation anymore,
thus one recovers the usual Weierstrass’s functions

E2(z,w) − e2 =
1

z2
+ ∑
γ∈Γ∖{0}

(
1

(z + γ)2
−

1

γ2
) ∶= ℘(z,Γ)

And similarly, by convergence argument

E1(z,w) − e2z =
1

z
+ ∑
γ∈Γ∖{0}

(
1

z − γ
+

1

γ
+
z

γ2
) ∶= ζ(z,Γ) (2.17)

2.2.5. Lattice dependence

As it was shown in §2.2.1, for n ≥ 3, the summation process depends only on the lattice Γ.
But for n = 1,2, the summation process depends also on the generators of the lattice.
For example:

(i) Interchanging the order of the double summation i.e. interchanging the roles of µ
and ν amounts to changing the generators u, v.

(ii) Making a translation on a lattice, say z+w0 in En amounts to substituting, respec-
tively, µ, ν by µ + µ0, ν + ν0 which by itself changes the generators u, v.

Thus it is only natural to expect that any changes on the generators in the case, where
one uses a different summation process (i.e. n = 1,2) would produce a different summa-
tion. We will treat the case that would be most relevant for the topic’s study, which is
the summation (that we will note ∑e′) obtained from ∑e by a translation on Γ (which
amounts to studying the periodicity of En with respect to Γ). We thus denote by E′

n the
function obtained by applying ∑e′.

It is clear that for n ≥ 3, En = E′
n since the series converges absolutely. For n = 1,2

From (2.15) we have

d

dz
E′

1(z, u
′, v′) = −E′

2(z, u
′, v′)

d

dz
E′

2(z, u
′, v′) = −2E′

3(z, u
′, v′) = −2E3(z, u, v)

Hence

{
E′

2(z, u
′, v′) −E2(z, u, v) = A(u, v)

E′
1(z, u

′, v′) −E1(z, u, v) = A(u, v)z +B(u, v)
(2.18)

Now E′
n(z, u

′, v′) = En(z +w0, u, v), where w0 = mu +m
′v. At first, notice that since ε1

is 1-periodic, then for all integer a

E1(z + au,u, v) = u
−1
∑e
ν

ε1(ξ + ντ) = u
−1ε1 (ξ + a) + u

−1
+∞

∑
ν=1

ε1(ξ + a + ντ) + ε1(ξ + a − ντ)

= u−1ε1 (ξ) + u
−1

+∞

∑
ν=1

ε1(ξ + ντ) + ε1(ξ − ντ) = E1(z, u, v)
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By the same reasoning,
E2(z + au,u, v) = E2(z, u, v)

On the other hand, observe that for an integer b

E1(z + bv, u, v) −E1(z, u, v) = lim
N→∞

u−1 (
N

∑
ν=−N

ε1(ξ + (b + ν)τ) +
N

∑
ν=−N

ε1(ξ + ντ))

= lim
N→∞

u−1 (
N+b

∑
ν=−N+b

ε1(ξ + ντ) −
−N

∑
ν=N

ε1(ξ + ντ))

= lim
N→∞

u−1 (
N+b

∑
ν=N+1

ε1(ξ + ντ) −
−N−1+b

∑
ν=−N

ε1(ξ + ντ))

By (2.13) ε1(ξ +ντ) ÐÐÐ→
ν→+∞

−πi and ε1(ξ +ντ) ÐÐÐ→
ν→−∞

πi. Hence one has for integers a, b

E1(z + au + bv, u, v) −E1(z, u, v) = −
2πib

u
(2.19)

and thus, by (2.18), A(u, v) = 0 and B(u, v) = −2πib
u .

More generally, for Γ′ = u′Z ⊕ v′Z a sub-lattice of Γ, R a set of representatives for
Γ/Γ′ containing 0. Then the summation process becomes

∑
r∈R

⎛

⎝
∑e
µ
∑e
ν

En(z + µu
′ + νv′)

⎞

⎠
= ∑
r∈R

⎛

⎝
∑e
µ
∑e
ν

En(z + µu + νv)
⎞

⎠

and for n ≥ 3

E′
n(z, u

′, v′) = ∑
r∈R

En(z + r, u
′, v′) = En(z, u, v) (2.20)

One can show that in this case

E′
1(z, u

′, v′) = ∑
r∈R

E1(z + r, u
′, v′) = E1(z, u, v) +

2πiCr
uu′

z −
πiν

u′
(2.21)

and by differentiating

E′
2(z, u

′, v′) = ∑
r∈R

E2(z + r, u
′, v′) = E2(z, u, v) +

2πiCr
uu′

where Cr is a constant that depends on r ∈ R and µu′ + νv′ = 2 ∑
r∈R

r.

Remark 2.2.6. In particular, En is periodic with respect to Γ for all n ≥ 2. We will later
see (by introducing the modified Eisenstein series E∗

n in §2.2.9) that in order to make up
for the periodicity of E1, we will have to sacrifice complex analyticity .
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2.2.7. Addition formula for Eisenstein series

Back to our previous task of deriving equations of the En functions, recall the slightly
more developed addition formula (2.8) for trigonometric functions, expressed in the no-
tations of §2.2.1 for ξ + ντ , ξ′ + ν′τ = ξ′ + (ρ − ν)τ :

2ε3(ξ + ξ
′ + ρτ)(ε1(ξ + ντ) + ε1(ξ

′ + (ρ − ν)τ)) = ε2(ξ + ντ)ε2(ξ
′ + (ρ − ν)τ)

− ε1(ξ + ντ)ε2(ξ + ξ
′ + ρτ)

− ε1(ξ
′ + (ρ − ν)τ)ε2(ξ + ξ

′ + ρτ)

We have shown that the series in (2.12) is absolutely convergent for n ≥ 2. Hence, by
applying Eisenstein’s summation process to both sides, one gets

2ε3(ξ + ξ
′ + ρτ)∑e

ν

(ε1(ξ + ντ) + ε1(ξ
′ + (ρ − ν)τ)) = ∑

ν

ε2(ξ + ντ)ε2(ξ
′ + (ρ − ν)τ)

− ε2(ξ + ξ
′ + ρτ)∑

ν

ε1(ξ + ντ)

− ε2(ξ + ξ
′ + ρτ)∑

ν

ε1(ξ
′ + (ρ − ν)τ)

Now, by summing over ρ (note that again by absolute convergence, the summation over
ν and ρ − ν can be performed independently, and we may as well interchange it with a
summation over ρ and ρ − ν respectively) one gets

∑
ρ

2uε3(ξ + ξ
′ + ρτ) [E1(z, u, v) +E1(z

′ + ρν, u, v)] = ∑
ρ−ν
∑
ν

ε2(ξ + ντ)ε2(ξ
′ + (ρ − ν)τ)

− ∑
ρ−ν
∑
ρ

ε2(ξ + ξ
′ + ρτ)ε1(ξ + (ρ − ν)τ)

− ∑
ρ−ν
∑
ρ

ε2(ξ + ξ
′ + ρτ)ε1(ξ

′ + (ρ − ν)τ)

= u4E2(z, u, v)E2(z
′, u, v)

− u4E2(z, u, v)E2(z + z
′, u, v)

− u4E2(z
′, u, v)E2(z + z

′, u, v)

Since E1(z
′ + ρv, u, v) = E1(z

′, u, v) − 2πi
u ρ, the RHS above becomes

2u4E3(z + z
′) [E1(z, u, v) +E1(z

′, u, v)] − 2πi∑
ρ

2ρ ε3(ξ + ξ
′ + ρτ)

and as −2ρ ε3(ξ + ξ
′ + ρτ) = d

dτ ε2(ξ + ξ
′ + ρτ), one has

2u4E3(z + z
′) [E1(z, u, v) +E1(z

′, u, v)] − 2πi
d

dτ
∑
ρ

ε2(ξ + ξ
′ + ρτ)

Finally one obtains the analogous addition formula of (2.8) given by

2E3(z + z
′) [E1(z, u, v) +E1(z

′, u, v)] −
2πi

u

d

dv
E2(z + z

′, u, v) (2.22)

= E2(z, u, v)E2(z
′, u, v) −E2(z, u, v)E2(z + z

′, u, v) −E2(z
′, u, v)E2(z + z

′, u, v)
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The generating function of Eisenstein-Kronecker numbers

We now fix z ∈ C ∖ Γ and regard both sides of the equation above as meromorphic
functions of z′. By (2.16) we have the power series expansions

E2(z
′, u, v) =

1

z′2
+

∞

∑
k=1

(2k − 1)e2kz
′2k−2 =

1

z′2
− e2 + 3e4z

′2 + . . .

E3(z
′, u, v) =

1

z′3
−

∞

∑
k=1

(
2k − 1

2
)e2kz

′2k−3 =
1

z′3
− 3e4z − 10e6z

′3 + . . .

On the other hand, for all n ≤ 1, the Taylor series of En around z′ = 0 is given by

En(z + z
′, u, v) =

∞

∑
k=0

E(k)(z)

k!
z′k

Hence we have

E2(z + z
′, u, v) = E2(z, u, v) − 2E3(z)z

′ + 3E4(z)z
′2 − . . .

E3(z + z
′, u, v) = E3(z) − 3E4(z)z

′ + 6E5(z)z
′2 + . . .

Developing both sides of (2.22) into power series around z′ = 0 gives something like

2 (E3(z) − 3E4(z)z
′ + . . . )(

1

z′
− e2z

′ + . . .) + 2E3(z)E1(z, u, v) + . . .

= −(
1

z′2
+ e2 + . . .)(−2E3(z)z

′ + 3E4(z)z
′2 + . . . ) −E2

2(z, u, v) + . . .

since the terms E2(z, u, v)E2(z
′, u, v) cancel. This finally implies, by equality of coeffi-

cients, the following identity

2E3(z) − 6E4(z) + 2E3(z)E1(z, u, v)
2πi

u

d

dv
E2(z, u, v) = 2E3(z) − 3E4(z) − 2E2

2(z, u, v)

⇔
2πi

u

d

dv
E2(z, u, v) = 3E4(z) − 2E3(z)E1(z, u, v) − 2E2

2(z, u, v). (2.23)

By integrating in both sides of (2.23) and remarking that

d

dz
[E1(z, u, v)E2(z, u, v)] = (

d

dz
E1(z, u, v))E2(z, u, v) +E1(z, u, v) (

d

dz
E2(z, u, v))

= 2E3(z)E1(z, u, v) + 2E2
2(z, u, v)

one gets the analogous of (2.6), namely

E3(z) = E2(z, u, v)E1(z, u, v) +
2πi

u

d

dv
E1(z, u, v) (2.24)

Remark 2.2.8 (Weierstrass invariant). Note that by the same reasoning above on (2.22)
by considering both sides as functions of z + z′ and developing at z + z′ = 0 we get

2πi

u

d

dv
e2(z, u, v) = −E4(z) − 2e2E2(z, u, v) − 2E2

2(z, u, v) = 5e4 − e
2
2

⇔ E4(z) = (E2(z, u, v) − e2)
2 − 5e4 (2.25)

⇔ 6E4(z) =
d2

dz2
E2(z, u, v) = 6(E2(z, u, v) − e2)

2 − 30e4
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The generating function of Eisenstein-Kronecker numbers

Integrating this formula gives

E2
3(z) = (E2(z, u, v) − e2)

3 − 15e4(E2(z, u, v) − e2) − 10(
πi

2u

d

dv
e4 − e2e4)

⇔ 4E2
3(z) = 4(E2(z, u, v) − e2)

3 − 60e4(E2(z, u, v) − e2) − 140e6

This give the known identities

℘′′ = 6℘2 −
1

2
g2

℘′2 = 4℘3 − g2℘ − g3

The constants g2 = 60e4 and g3 = 140e6 are known as the Weierstrass invariant.

2.2.9. Modified Eisenstein series E∗
n

We have seen in the end of §2.2.5 that En is periodic with respect to Γ for all n ≥ 2. We
make up for the periodicity of E1 as follows: Let u, v be generators of Γ as above, and
recall τ = I( vu) > 0. One sees that

uv − vu = uu(
v

u
−
v

u
) = −∣u∣2(2iτ) = −2πiA (2.26)

where A =
∣u∣2

π τ > 0. Now for all z ∈ C we can write z = αu + βv where α,β ∈ R. Observe
that

zu − uz = β(vu − uv) ⇒ β(z) ∶= β =
zu − uz

2πiA

We pose

E∗
1 (z,Γ) ∶ = E1(z, u, v) +

2πi

u
β(z)

E∗
2 (z,Γ) ∶ = −

∂

∂z
E∗

1 (z,Γ) = E2(z, u, v) +
u

Au
(2.27)

Remark 2.2.10. One clearly sees that E∗
1 is odd and periodic with respect to Γ. Moreover,

it depends only on the lattice Γ and not on the choice of the generators: Indeed, the
formula (2.21) in the end of §2.2.5 shows that any change in the generators of Γ produces
a function that differs from E1(z, u, v) only by a linear factor Uz + V . Thus E∗

1 can be
characterised as the unique Γ-periodic function that differs from all the E′

1(z, u
′, v′) by

a real linear factor.

Define the following differential operators

D ∶= z
∂

∂z
+ u

∂

∂u
+ v

∂

∂v

D ∶= z
∂

∂z
+ u

∂

∂u
+ v

∂

∂v
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Clearly, D is invariant under any real linear substitution in z, u or in v and it commutes
with ∂

∂z . We define for integers b > a ≥ 0

Ea,b(z,Γ) = ∑e
w∈Γ

(z +w)a

(z +w)b

Now, for b − a ≥ 3 this series is absolutely and locally uniformly convergent. Moreover,
one sees that

DE1(z,Γ) = ∑e
µ,ν

−
z

(z + µu + νv)2
−

µu

(z + µu + νv)2
−

νv

(z + µu + νv)2
= −∑e

w∈Γ

z +w

(z +w)2

Similarly,

D
(a)
E1(z,Γ) = (−1)aa!∑e

w∈Γ

(z +w)a

(z +w)a+1

and take the partial derivatives with respect to z

(
∂

∂z
)
b−a−1

D
(a)
E1(z,Γ) = (−1)aa!∑e

w∈Γ

(z +w)a (
∂

∂z
)
b−a−1

(
1

(z +w)a+1
)

= (−1)aa!∑e
w∈Γ

(z +w)a (
∂

∂z
)
b−a−1

Ea+1(z,Γ)

= (−1)aa!∑e
w∈Γ

(z +w)a(−1)b−a−1(a + 1)(a + 2) . . . (b − 1)Eb(z,Γ)

= (−1)b−1(b − 1)!∑e
w∈Γ

(z +w)a

(z +w)b

Hence

Ea,b(z,Γ) = ∑e
w∈Γ

(z +w)a

(z +w)b
=

(−1)b−1

(b − 1)!
D

(a)
(
∂

∂z
)
b−a−1

E1(z,Γ)

ea,b =
(−1)a

(b − 1) . . . (b − a)
D

(a)
(e∗b−a)

where ea,b is the values of Ea,b(z) − za

zb
near z = 0.

Similarly, define

E∗
a,b(z,Γ) =

(−1)b−1

(b − 1)!
D

(a)
(
∂

∂z
)
b−a−1

E∗
1 (z,Γ)

e∗a,b =
(−1)a

(b − 1) . . . (b − a)
D

(a)
(e∗b−a) (2.28)

Remark 2.2.11. Note that

• Ea,b = E
∗
a,b whenever b − a ≥ 3, as E∗

2 differs from E2 by a constant.
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• For all n ≥ 0, E0,n = En and E∗
0,n = E

∗
n.

Observe that since En(z, u, v) is homogeneous of degree −n, one has for all t

En(tz, tu, tv) = t
−nEn(z, u, v) (2.29)

Differentiating (2.29) with respect to t gives

∂En
∂z

∂z

∂t
+
∂En
∂u

∂u

∂t
+
∂En
∂v

∂v

∂t
= (z

∂En
∂z

+ u
∂En
∂u

+ v
∂En
∂v

) (tz, tu, tv) = −nt−n−1En(z, u, v)

Taking t = 1 gives

D(En) = z
∂En
∂z

+ u
∂En
∂u

+ v
∂En
∂v

= −nEn(z, u, v)

In particular, as E1 is homogeneous of degree −1 in z, u, v and of degree 0 in z, u, v

D(E1)(z) = −E1(z) (2.30)

Hence, one sees that

E∗
1,2 = −D(E∗

1 ) = −D(E1) +
u

u

zu − zu

Au
= −D(E1) +A(E2 −E

∗
2 )(E

∗
1 −E1)

= −D(E1) +A(E∗
2E1 −E

∗
1E2) +

2πiA

u

∂

∂v
E1 +A(E∗

3 −E
∗
2E

∗
1 ) by (2.24)

= −D(E1) +
zu − zu

u

∂

∂z
E1 −

u

u
E1 +

uv − vu

u

∂

∂v
E1 +A(E∗

3 −E
∗
2E

∗
1 ) by (2.26)

Now, using (2.30), the first three terms cancel out and one finally gets

E∗
1,2 = A(E∗

3 −E
∗
2E

∗
1 ) (2.31)

By taking n − 1 successive derivations, the above equation becomes

E∗
1,n+1 = −

1

n
D(E∗

1 ) =
A

2
(nE∗

n+2 −E
∗
1E

∗
n−1 − ⋅ ⋅ ⋅ −E

∗
n+1E

∗
1 +E

∗
n+2) (2.32)

More generally, for b > a ≥ 0 one has the formula

E∗
a,b =

Aa

2a(b − 1) . . . (b − a)
Pa,b (E

∗
1 , . . . ,Ea+b)

where Pa,b ∈ Q[E∗
1 , . . . ,E

∗
a+b] is a polynomial of degree a + 1.

In the same fashion, performing almost the same calculations as the ones that lead
formula (2.32) one gets

e∗1,2k+1 = −
1

2k
D(e∗2k) =

A

2
((2k + 1)e∗2k+2 − e

∗
2e

∗
2k − ⋅ ⋅ ⋅ − e

∗
2kE

∗
2 + e

∗
2n+2)

e∗a,b =
Aa

2a(b − 1) . . . (b − a)
Qa,b (e

∗
2 , . . . , ea+b) (2.33)

where Qa,b ∈ Q[e∗1 , . . . , ea+b] is a polynomial of degree a + 1. Note that Qa,b = 0 for all
odd values of a + b.
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2.3. The Eisenstein-Kronecker series

Let Γ = ω1Z⊕ ω2Z ⊂ C be a lattice as in §2.2, and

A(Γ) =
(Area of Γ)

π
=

1

π
I(

v

u
) =

ω2ω1 − ω1ω2

2πi
.

We define for z, z′ ∈ C

⟨ z, z′ ⟩Γ ∶= exp(
zz′ − z′z

A(Γ)
) .

Note that, by direct calculations, one easily verifies that ⟨ ⋅, ⋅ ⟩Γ defines a complex pairing
since:

(i) ⟨ z, z′ ⟩Γ = ⟨−z′, z ⟩Γ = ⟨ z′, z ⟩−1
Γ

(ii) ⟨az, z′ ⟩Γ = ⟨ z, az′ ⟩Γ for any a ∈ C

(iii) z ∈ Γ⇔ ⟨ z, γ ⟩Γ = 1 for any γ ∈ Γ.

2.3.1. Eisenstein-Kronecker-Lerch series

Definition 2.3.2 (Eisenstein-Kronecker-Lerch series). Le a be a positive integer and
z0, z

′
0 ∈ C be complex numbers. we define the Eisenstein-Kronecker-Lerch series to be the

holomorphic functions on the domain D(s) = {s ∈ C ∣R(s) > 1 + a
2} defined by

K∗
a (z0, z

′
0, s; Γ) ∶=

∗

∑
γ∈Γ

(z0 + γ)
a

∣z0 + γ∣2s
⟨γ, z′0 ⟩Γ (2.34)

Where the sum
∗

∑ goes over all γ ∈ Γ except −z0 when z0 ∈ Γ.

This series converges absolutely for R(s) > 1 + a
2 . Indeed, for ε > 0 and for all

γ ∈ Γ ∖C ∩B (0,max{
∣z0∣
ε ,

∣z′0∣
2 }) :

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣z0 + γ∣
a ≤ (∣z0∣ + ∣γ∣)a ≤ (1 + ε)a∣γ∣a

∣ 1
∣z0+γ∣2s

∣ ≤ ∣ 1
∣z0∣−∣γ∣2s

∣ ≤ 1
(1−ε)2R(s)∣γ∣2R(s)

On the other hand, observe that

γz′0 + γz
′
0

A
∈ iR ⇒ ∣⟨γ, z′0 ⟩Γ∣ = 1

Hence, by letting εÐ→ 0 one finally sees that

∣
(z0 + γ)

a

∣z0 + γ∣2s
⟨γ, z′0 ⟩Γ∣ ≤

2

A

∞

∑
k=0

∣γ∣−(2R(s)−a)
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Which, by the Convergence Lemma (A.1.1), converges to a holomorphic function for all
values R(s) > a

2 + 1.

By abuse of notations, we will often omit “Γ” when there is no fear of confusion. For fixed
complex numbers z0, z

′
0 ∈ C, one can extend the domain of the Eisenstein-Kronecker-Lerch

series as follows:

Proposition 2.3.3. Let a be a positive integer, z0, z
′
0 ∈ C be complex numbers.

(i) The function K∗
a (z0, z

′
0, s) admits an analytic continuation into a meromorphic

function on C with possible poles only in the following cases:

(a) a = 0 and z ∈ Γ: In this case, the function K∗
a (z0, z

′
0, s) has a simple pole at

s = 0 with residue −⟨ z′0, z0 ⟩.

(b) a = 0 and z0 ∈ Γ: In this case, the function K∗
a (z0, z

′
0, s) has a simple pole at

s = 1 with residue A−1.

Moreover, for a ≥ 1 the function

K∗
a (z0, z

′
0, s) =

1

Γ(s)
(IA−1(a, z0, z

′
0, s) +A

a+1−2sIA−1(a + 1, z′0, z0,1 − s)⟨ z
′
0, z0 ⟩Γ)

(2.35)
is analytic in (z0, z

′
0) for all γ ∈ Γ ∖ {−z0} with

IA−1(a, z0, z
′
0, s) =

∞

∫
A−1

∑
γ∈Γ

exp (−t∣z0 + γ∣
2) (z0 + γ)

a⟨γ, z′0 ⟩Γt
s−1 dt

(ii) The function K∗
a (z0, z

′
0, s) satisfies the functional equation

K∗
a (z0, z

′
0, s) = A

a+1−2sΓ(a + 1 − s)

Γ(s)
K∗
a (z

′
0, z0, a + 1 − s)⟨ z′0, z0 ⟩Γ (2.36)

Proof. (i) Fix z0, z
′
0 in C and consider the Mellin transform of K∗

a (z0, z
′
0, s; Γ) as a

function of z0. Namely, the function

Γ(s)K∗
a (z0, z

′
0, s) ∶=

∞

∫
0

∗

∑
γ∈Γ

exp (−t∣z0 + γ∣
2) (z0 + γ)

a⟨γ, z′0 ⟩t
s−1 dt (2.37)

Pose

θa,t(z, z
′
0) ∶= ∑

γ∈Γ

exp (−t∣z + γ∣2) (z + γ)a⟨γ, z′0 ⟩ (2.38)

θ∗a,t(z, z
′
0) ∶=

∗

∑
γ∈Γ

exp (−t∣z + γ∣2) (z + γ)a⟨γ, z′0 ⟩ (2.39)

One has the following transformation formula:
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Lemma 2.3.4. The above function satisfies the following functional equation

θa,t(z0, z
′
0) =

⟨ z′0, z0 ⟩

(At)a+1
θa,A−2t−1(z′0, z0)

Proof. See appendix A, lemma A.1.4.

Note that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

θ∗a,t(z0, z
′
0) = θa,t(z0, z

′
0) − ⟨ z′0, z0 ⟩ If a = 0 and z0 ∈ Γ;

θ∗a,t, (z0, z
′
0) = θa,t(z0, z

′
0) Otherwise.

(2.40)

Let T > 0, we decompose the integral (2.37) into

T

∫
0

θ∗a,t(z, z
′
0)t

s−1 dt +

∞

∫
T

θ∗a,t(z, z
′
0)t

s−1 dt =∶ I0(t, z
′
0, z0, s − 1) + I∞(t, z′0, z0, s − 1)

For ε > 0 and for all ∣z∣
2 ≤ ∣γ∣ ≤ N and t ≥ T > 0

−t∣γ + z∣2 ≤ −t∣∣γ∣ − ∣z∣∣2 ≤ −t(1 − ε)2∣γ∣2

⇒ ∣γ + z∣e−t∣γ+z∣
2

≤ (1 + ε)a∣γ∣ae−t(1−ε)
2∣γ∣2

Hence, by letting εÐ→ 0 and making the change of variable u = ∣γ∣2t

∣I∞∣ ≤ ∑
γ

∣γ∣a
∞

∫
T

e−∣γ∣
2ttR(s)−1 dt

≤ ∑
γ

1

∣γ∣2R(s)−a

∞

∫
T

e−uuR(s)−1 du < ∞

where Γ(s, T ) =
∞

∫
T

e−uus−1 du denotes the “upper” incomplete Γ-function, and con-

verges for all real values of s. Hence I∞ is absolutely and uniformly convergent
inside compact sets for all values of s.

Now back to IT (t, z′0, z0, s − 1), one distinguishes between the following cases:
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• If a = 0 and z0 ∈ Γ: Make the change of variable t = A−2u−1

T

∫
0

θ∗0,t(z0, z
′
0)t

s−1 dt =

T

∫
0

θ0,t(z, z
′
0)t

s−1 dt −

T

∫
0

⟨ z′0, z0 ⟩t
s−1 dt

= ⟨ z′0, z0 ⟩

T

∫
0

(At)−1θ0,A−2t−1(z′0, z0)dt − ⟨ z′0, z0 ⟩
T s

s

= ⟨ z′0, z0 ⟩

∞

∫
T

A1−2sθ0,u(z
′
0, z0)u

1−s du − ⟨ z′0, z0 ⟩
T s

s

= ⟨ z′0, z0 ⟩ (I∞(u, z0, z
′
0,1 − s,0) −

T s

s
)

• If a = 0 and z′0 ∈ Γ:
T

∫
0

θ∗0,t(z0, z
′
0)t

s−1 dt = ⟨ z′0, z0 ⟩

T

∫
0

(At)−1θ∗0,A−2t−1(z
′
0, z0)dt

= ⟨ z′0, z0 ⟩

T

∫
0

(At)−1θ0,t(z, z
′
0)t

s−1 dt − ⟨ z′0, z0 ⟩

T

∫
0

⟨ z0, z
′
0 ⟩(At)

−1ts−1 dt

= ⟨ z′0, z0 ⟩

∞

∫
T

A1−2sθ0,u(z
′
0, z0)u

1−s du −A−1T
s−1

s − 1

= ⟨ z′0, z0 ⟩I∞(u, z0, z
′
0,1 − s,0) −A

−1T
s−1

s − 1

• For all a > 0:

T

∫
0

θ∗a,t, (z, z
′
0)t

s−1 dt =

T

∫
0

θa,t(z, z
′
0)t

s−1 dt = ⟨ z′0, z0 ⟩

T

∫
0

(At)−1θa,A−2t−1(z′0, z0)dt

= ⟨ z′0, z0 ⟩

∞

∫
T

Aa+1−2sθa,u(z
′
0, z0)u

a+1−s du

= ⟨ z′0, z0 ⟩I∞(u, z0, z
′
0, a + 1 − s,0)

Finally, the analytic continuation of the Eisenstein-Kronecker-Lerch series is given
by:

• If a = 0 and z0 ∈ Γ:

Γ(s)K∗
a (z0, z

′
0, s) = I∞(t, z′0, z0, s − 1,0) + ⟨ z′0, z0 ⟩I∞(t, z0, z

′
0,1 − s,0)

− ⟨ z′0, z0 ⟩
T s

s

with a simple pole at s = 0 and ress=0(K
∗
a , s) = −⟨ z

′
0, z0 ⟩

Universität Regensburg, Department of Mathematics, 2020 25



The generating function of Eisenstein-Kronecker numbers

• If a = 0 and z′0 ∈ Γ:

Γ(s)K∗
a (z0, z

′
0, s) = I∞(t, z′0, z0, s − 1,0) + ⟨ z′0, z0 ⟩I∞(t, z0, z

′
0,1 − s,0)

−A−1T
s−1

s − 1

with a simple pole at s = 1 and ress=1(K
∗
a , s) = −A

−1

• For all a > 0

Γ(s)K∗
a (z0, z

′
0, s) = I∞(t, z′0, z0, s−1,0)+⟨ z′0, z0 ⟩I∞(t, z0, z

′
0, a+1−s,0) (2.41)

Taking T = A−1, using lemma A.1.4 and making again the change of variable
u = A−2t−1 in I∞(t, z′0, z0, s− 1) = IA−1(u, z0, z

′
0, a+ 1− s,0), one gets the functional

equation in (2.36).

Remark 2.3.5. The parity of the functionK∗
a (z0, z

′
0, s) depends on the parity of a: Indeed,

it is clear from 2.34 for R(s) > 1 + a
2 , and by analytic continuation, to all values of s.

Moreover, it is Γ-periodic.

2.3.6. Eisenstein-Kronecker numbers

One wants to relate the Eisenstein-Kronecker-Lerch series for integers a, b as in the case
of the modified Eisenstein series in §2.2.9. To do so, consider for all a ≥ 0, z ∈ C ∖ Γ and
ω ∈ C the function

Ka(z,ω, s) ∶= ∑
γ∈Γ

(z + γ)a

∣z + γ∣2s
⟨γ,w ⟩ (2.42)

Then one sees that in this case, one has Ka(z,ω, s) = K
∗
a (z,ω, s). We will write Ka for

all z ∈ C ∖ Γ and we always fix z0,wo ∈ C for K∗
a .

For R(s) > 1 + a
2 and a > 0, direct calculations show that

∂

∂z
Ka(z,ω, s) = −sKa+1(z,ω, s + 1)

∂

∂z
Ka(z,ω, s) = (a − s)Ka−1(z,ω, s) (2.43)

One also easily deduces the following identity:

DKa(z,0, s) = −sKa+2(z,0, s + 1) (2.44)

More generally, and by analytic continuations, one has for all values of s:

Lemma 2.3.7. Let a > 0, z ∈ C ∖ Γ and ω ∈ C. Then, for all s ∈ C, the function
K∗
a (z,ω, s) satisfies the following differential equations
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• ∂
∂zKa(z,ω, s) = −sKa+1(z,ω, s + 1)

• ∂
∂zKa(z,ω, s) = (a − s)Ka−1(z,ω, s)

• ∂
∂ωKa(z,ω, s) = −A

−1(Ka+1(z,ω, s) − zKa(z,ω, s))

• ∂
∂ωKa(z,ω, s) = A

−1(Ka−1(z,ω, s − 1) − zKa(z,ω, s))

This shows that Ka(z,ω, s) is holomorphic in z for all a ≥ 1, since Ka−1(z,ω, s) has a
simple pole at s = 1 (and only when a = 1 and w ∈ Γ). In this case one has

∂

∂z
K1(z,0,1) = − ress=1(K0, s) = −A

−1

Observe that

∂

∂z0
K∗

2 (z0,0,2) = −2
∗

∑
γ∈Γ

(z0 + γ)
2

∣z0 + γ∣6
= −2∑e

γ

(z0 + γ)
2

(z0 + γ)3
= −2E3,2(z0,Γ) =

∂

∂z0
E2(z0, u, v)

∂

∂z0
K∗

2 (z0,0,2) = 0 =
∂

∂z0
E2(z0, u, v)

Hence,
K∗

2 (z0,0,2) = E2(z0, u, v) +C

Similarly,

∂

∂z0
[K∗

1 (z0,0,1) −E1(z, u, v)] = −K
∗
2 (z0,0,2) +E2(z0, u, v) = −C

∂

∂z0
[K∗

1 (z0,0,1) −E1(z, u, v)] = −A
−1

Hence, K∗
1 (z0,0,1) = E1(z0, u, v) +C

′z0 +C
′′ where C ′,C ′′ ∈ R.

As K∗
1 is Γ-periodic, remark 2.2.10 implies that

K∗
1 (z0,0,1) = E

∗
1 (z0,Γ)

and using (2.44), one gets for all b > a ≥ 0:

K∗
a+b(z0,0, b) = E

∗
a,b(z0; Γ).

Definition 2.3.8 (Eisenstein-Kronecker number). Let z0, z
′
0 ∈ C. For any integers a ≥ 0

and b ≥ 1, we define the Eisenstein-Kronecker numbers to be

e∗a,b(z0, z
′
0; Γ) ∶=K∗

a+b(z0, z
′
0, b; Γ)

Note that for z0 = z
′
0 = 0 one has

e∗a,b(0,0; Γ) =K∗
a+b(0,0, b) = e

∗
a,b(Γ)

where e∗a,b in the right hand side are the same as (2.28).

Universität Regensburg, Department of Mathematics, 2020 27



The generating function of Eisenstein-Kronecker numbers

28 Universität Regensburg, Department of Mathematics, 2020



3
L-function associated to algebraic Hecke

characters

The L-functions are a very important class of classical functions, that arise in algebraic
number theory. One of the most important ones is known as the Riemann ζ-function,
the Dedekind ζ-function or the Dirichlet L-series. In this section we introduce another
important class of L-function associated to number fields : the Hecke L-function. We then
show, in the case of an imaginary quadratic field, how it is -under complex multiplication-
related to the Eisenstein-Kronecker numbers e∗a,b.

3.1. Hecke characters

In all what follows, K will denote an algebraic number field, and OK its ring of integers.

3.1.1. Motivations

Let G be an abelian group. We will call a character of G every group homomorphism

χ ∶ GÐ→ C×

If G is finite, then χ(g) is a root of unity for all g ∈ G.

Definition 3.1.2 (Dirichlet character). Let n ≥ 0 be a positive integer, and χn a char-
acter of Gn ∶= (Z/nZ)

×
. The Dirichlet character induced by χn is the arithmetic

function

χ ∶ Gn Ð→ Z

k z→ χ(k) = {
χn(k) if (n, k) = 1,

0 else

For a given n ≥ 0, every Dirichlet character satisfies:

χ(k + n) = χ(k) and χ(kk′) = χ(k)χ(k′)
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for all k, k′ ∈ Z. A Dricihlet character χ is said to be primitive if for all d ∣ n, χ cannot
factor through

Gn C×

Gd

π

χ

χ′

where χ′ is some Dirichlet character on Gd. Such an n is called the conductor of χ and
will be denoted by fχ ∶= n. When fχ = 1, the character χ is said to be principal. Finally,
if its codomain is S1, the character is said to be unitary. An example of a primitive
Dirichlet character on Gp where p ≠ 2 is prime, is given by the Legendre symbol

χp(k) ∶= (
k

p
) ≡ k

p−1
2 mod p

Definition 3.1.3 (Dirichlet L-functions). Let χ be a Dirichlet character modulo n. For
a complex number s with R(s) > 1, theDirichlet L-function associated to the Dirichlet
character χ is the formal series

L(s,χ) ∶=
∞

∑
n=1

χ(n)

ns

Note that if χ is not principal, then the series converge absolutely for for all R(s) > 1
and the function L(s,χ) has an analytic continuation to the entire complex plane. (When
χ is principal, it has a simple pole s = 1).

Theorem 3.1.4 (Euler product). Let χ be a Dirichlet character. Then for all s ∈ C such
that R(s) > 1

L(s,χ) = ∏
p prime

(1 − χ(p)p−s)−1

Proof. See for example [Apo76].

One sees from this theorem that the Dirichlet L-function is somehow related to K = Q.
One would like to construct a more general L-function for an arbitrary number fields K.
By analogy to the construction above, one would think of constructing a characters on
G = (OK/a)

×
where a is an ideal of OK . The problem though is that for such an ideal

a; the inverse of the coset x+ a is in general not x−1 + a since x−1 does not always belong
to OK . (this is actually true even for Q)

3.1.5. Classical Hecke characters

Recall that for any fractional ideal a one has a decomposition

a =
r

∏
i=1

p
vpi(a)

i
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Two fractional ideals are said to be coprime, and denote (a,b) = 1 if no prime ideal
appears in both their decomposition.
Let f ⊲ OK be a non-zero integral ideal, then f has a unique decomposition into prime
ideals p in OK . Consider fractional ideals a = (α) generated by units of K. Then one
can form the subgroup of K× consisting of units that generate fractional ideals co prime
to f, namely

K(f) = {α ∈K× ∣ (a, f) = 1}.

Now for (β) ∶= b, the set

K(f)f = {β ∈K ∣ vp(b) ≥ vp(f) for all p appearing in f} ≠ ∅

as it contains 0 (since f does) and for β,β′ ∈K that generate b,b′ respectively

vp(b) ≥ vp(f) and vp(b
′) ≥ vp(f) ⇒ vp(b

′′) ≥ vp(f) where b′′ ∶= (b + b′) (3.1)

Hence one can define the following equivalence relation:

Definition 3.1.6 (Multiplicative congruence). For α,β ∈ K(f), define the multiplica-
tive congruence by the equivalence relation

α ≡ β mod∗ f ⇔
β

α
∈ k(f) ∶= 1 + k(f)f

Remark 3.1.7. (i) Note that mod∗ is well defined as an equivalence relation since

β

α
∈ 1 + k(f)f ⇔ β ∈ α + αk(f)f ⇔ β − α ∈ k(f)f

which is closed under multiplication by (3.1).

(ii) Kf = {α ∈K× ∣ α ≡ 1 mod∗ f} is a subgroup of K(f) since

α,β ≡ 1 mod∗ f ⇒ α ≡ β mod∗ f ⇒ αβ−1 ≡ 1 mod∗ f

Moreover, one has an isomorphism

(OK/f)
×
≅ K(f)/Kf

(3.2)

The isomorphism is given by the map α + f z→ α +K(f)f which is surjective (by the
Chinese remainder theorem) and has a kernel equal to 1 + f (since α ∈ OK). We choose
the following set of notations for simplicity:

Notation 3.1.8. For a non-zero integral ideal f of OK :

I(f) ∶={a fractional ideals of K ∣ (a, f) = 1}

P (f) ∶={ principal fractional ideals a = (α) ∈ I(f)}

Pf ∶={a = (α) ∈ P (f) ∣ α ≡ 1 mod∗ f}
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Recall that one has a map

K Ð→ R⊗QK ≅ (R)r1 × (C)r2

α z→ 1⊗ α

where r1, r2 is the number of real and respectively complex places of K.

Definition 3.1.9 (Hecke character). Let f be a non-zero ideal of OK , and χ∞∶ (R×)r1 ×

(C×)r2 Ð→ C× a continuous homomorphism. A Hecke character of conductor f and
infinity type (r1, r2) is a continuous homomorphism

χ ∶ I(f) Ð→ C×

that is entirely determined on Pf by χ∞:

χ(a) = χ∞(1⊗ α)−1 for all a ∈ Pf

Example 3.1.10. (i) For K = Q, Dirichlet characters are Hecke characters (often called
Hecke characters of finite type) of infinity type (1,0).

(ii) One can construct non-Dirichlet Hecke character as follow: Let s ∈ C and consider
the character

χs ∶ I(K) Ð→ C×

where for all a = (α) ∈ I(K)

χk(a) = ∣α∣s

Then, one has the following commutative diagram

Q× I(Q)

R× C×

α↦(α)

α
↧

1⊗α
χs

α↦∣α∣−s

Thus, χs is a well defined Hecke character of conductor f = Z and infinity type
(1,0) given by

χs,∞ ∶ R× ÐÐ→ C×

α z→ ∣α∣−s.

(iii) ForK = Q(i), one can (similarly) construct a family of finite order Hecke characters
as follow: Define for any integer k

χk ∶ I(K) Ð→ C× (3.3)

where for all a = (α) ∈ I(K)

χk(a) = (
α

∣α∣
)

4k
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Then, one has the commutative diagram

K× I(K)

C× C×

α↦(α)

α
↧

1⊗α
χk

α↦( α
∣α∣

)
−4k

Thus, χk is a well defined Hecke character of conductor f = OK and infinity type
(0,1) defined by

χk,∞(α) ∶ C× ÐÐ→ C×

α z→ (
α

∣α∣
)

−4k

Remark 3.1.11. Let n = ∣K(f)/Kf
∣ = ∣(OK/f)

×
∣ < ∞.

For any α ∈K×:

α ∈K(f) ⇒ αn ∈Kf ⇒ χ(a)n = χ−1
∞ (α)n ⇒ χ(a) = ε(α)χ−1

∞ (α)

where ε(α) is a root of unity for all α ∈K×. This defines a (unitary) character

ε ∶ (OK/f)
×
Ð→ S1 (3.4)

as ε(α) = χ(a)χ∞(α) and ε is trivial on Kf.

Hence, given a non-zero integral ideal f and a character as in (3.4), one has an equivalent
definition of Hecke characters, where now ε and χ∞ determine the Hecke character χ
on principal ideals in P (f) rather than just the ones in Pf, i.e. one has the following
commutative diagram

K(f) P (f)

K(f)/Kf
× (R×)σ1 × (C×)σ2 C×

αz→a=(α)

α
↧

(αKf,1⊗α)
χ

ε⋅χ∞

In (ii) of example 3.1.10, the ε-character is trivial.

3.1.12. Classification of local characters

Let Kv be the completion of K with respect to a place v and ∣.∣v the normalised absolute
value on the completion Kv. A local character χv relative to a place v is a continuous
homomorphism

χv ∶K
×
v Ð→ C×
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It is said to be unramified if it is trivial on the local units, i.e.

χ∣O×v
= 1

(For example, if K = R, this translates into χ(−1) = 1)

Since K×
v ≅ O×v × ∣K×

v ∣v, every character factorises as a product χ = χ′ ⋅ χ′′ of charac-
ters on O×v and ∣K×

v ∣v respectively, where

(i) Compactness of O×v makes all characters χ′ unitary (these characters are actually
pullbacks of unitary characters, defined by the restriction of χ).

(ii) Characters χ′′ on ∣K×
v ∣ = {y ∈ R>0 / ∣α∣v for some α ∈K×

v } are all of the form

χ′′ ∶ y z→ ys = ∣α∣sv for some α ∈K×
v , s ∈ C

In particular,
χv is unramified ⇔ χ = ∣ . ∣sv for some s ∈ C

This allows us to classify all the local characters in the archimedean case:

(i) Kv = R: O×v = {±1} and the only unitary characters of R× are

χ′ ∶ α z→ 1 and χ′ ∶ α z→ sgn(α) =
α

∣α∣

Thus

χv(x) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∣x∣s if χv is unramified

sgn(x)∣x∣s if χv is ramified

(ii) Kv = C: O×v = S1 and the only unitary characters of C× are

χ′n ∶ e
iθ z→ einθ for some n ∈ Z

Thus
χn,s(z) = χn,s(re

iθ) = rseinθ = ∣z∣sArg(zn)

We end this subsection with the following useful remark:

Remark 3.1.13. The kernel of any local character is an open subgroup of K×
v :

Indeed, by continuity, χ(O×v ) ≤ S1 since it is compact (otherwise, it will not be bounded).
Let Ux = {e2πix ∣ − π < x < π} ⊂ S1, then χ−1(Ux) ∩ O

×
v is an open neighbourhood of

1, hence it contains a subgroup 1 + πnO×v for some n ≥ 1. But then, χ(1 + πnO×v ) is a
subgroup of S1 contained in U and the only such possible subgroup is {1}. Hence it must
lay in the kernel.
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3.1.14. Idèlic Hecke characters

Recall that for each finite set S of places (i.e. valuations on K) that includes all the
infinite ones (valuations coming from real/complex embeddings), one can form the topo-
logical product

AS = ∏
v∈S

Kv ×∏
v∉S

Ov and JS = ∏
v∈S

K×
v ×∏

v∉S

O×v

The Adèlic (Idèlic) topology is defined to be the colimit topology given by

A = lim
←Ð
S

AS and JK = lim
←Ð
S

JS

Notation 3.1.15. We will write v ∣ ∞ for infinite places and v ∤ ∞ for finite places, and
adopt the following notations:

J∞ = (K ⊗Q R)× = (R×)r1 × (C×)r2 , J+∞ = (R>0)
r1 × (C×)r2

and JK = ∏vK
×
v for almost all v.

(3.5)

Definition 3.1.16 (Idèlic Hecke character). A Hecke character of a number field K
is a continuous (with respect to the idèlic topology) homomorphism

χ ∶ JK Ð→ C×

Such that χ(K×) = 1.

Remark 3.1.17. (i) Note that χ is trivial on (the image of) K× through the embedding

K× ↪Ð→ JK
α z→ (α,α,α, . . . )

which makes sense since ∣α∣v = 1 for almost all places v of K.

(ii) The isomorphism in (3.2) in the case of Kv becomes

(Ov/pev )
×
≅ O

×
v /1 + pev

(iii) The idèle class group of K is the topological group

Cl(K) = JK/K×

A Hecke character is sometimes also called an Idèle class character and can be
equivalently defined as a continuous homomorphism

χ ∶ Cl(K) Ð→ C×
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Proposition 3.1.18. One has a bijection

{Characters of JK}
∼
ÐÐ→ {(χv)v ∣χv ∶K

×
v → C× is unramified for almost all v}

χz→ (χv)v

where, for each place v of K, the local character χv is defined as

χv = χ∣K×
v
∶ K×

v ÐÐ→ C×

αv z→ χ(1, . . . , αv
↑

vth component

, . . . ,1)

Proof. Note that this map is well defined since the profinite completion

Ôv = ∏
v∤∞

O×v

is profinite. By the same argument as in remark 3.1.13, ker (χ∣ÔK
) contains an open

subgroup of ∏
v∤∞
O×v , namely

W = ∏
v∈S

(1 + πnvOv) ×∏
v∉S

O×v for some finite S,n ≥ 1

If one considers the composition

χv ↪Ð→ JK
χ
ÐÐ→ C×

then χv is continuous for all places v and for finitely many v ∉ S:

χv(Ov) = 1

On the other hand, given a family (χv ∶K
×
v Ð→ C×)v one defines the character

χ =∏
v

χv ∶ JK ÐÐ→ C×

(αv)v z→∏
v

χv(αv)

and by assumptions χv(αv) = 1 for almost all v.

Remark 3.1.19. As seen above, an idèlic Hecke character χ = ∏
v
χv comes always

with a conductor
f =∏

v

pevv
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(i) One can recover a classical Hecke character from an idèlic one as follow: Define a
character

χ̃ ∶ I(f) Ð→ C×

with χ̃(pv) = χv(πv) for all non-archimedean v ∤ f.

In order to recover a classical Hecke character, one needs an infinity type χ̃∞
on J∞ such that the following commutes:

Kf I(f)

J∞ C×

χ̃

χ̃∞

For α ∈Kf one has the composition

α z→ (α) =∏pe
′

v
v ∈ I(f) z→∏

v

χ̃(pv)
e′v .

On the other hand, since χ vanishes on K×,

1 = χ(α) = ∏
v∣∞

χv(α) ∏
v∤∞

χv(α) = χ∞(α)∏
v

χv(O
×
vπv)

e′v = χ∞(α)∏
v

χ̃(pv)
e′v

⇒ χ−1
∞ (α) =∏

v

χ̃(pv)
e′v

Using the identification in (3.5), one sees that

α z→ α⊗ 1 ∈ J∞ z→ χ−1
∞ (α⊗ 1) =∏

v

χ̃(pv)
e′v

Hence for any given idèlic character χ, the corresponding character χ̃ on Pf is a
classical Hecke character, with conductor f and infinity type χ̃∞ = χ−1

∞ (α).

(ii) The converse is also true: A classical Hecke character can also be seen as an idèlic
character. We illustrate that for the simple case of a Dirichlet character: Let
K = Q, and JQ be the group of idèles on Q. The p-adic valuation induces a
canonical isomorphism

Q×
p ≅ ⟨p⟩ ×Z×p

And one has

JQ = R× ×∏
p

Q×
p for almost all p

≅ ({±1} ×R>0) ×
⎛

⎝
∏
p

Z×p ×⊕
p
Z
⎞

⎠

≅ ({±1} ×⊕
p
Z) ×R>0 ×∏

p

Z×p

≅ Q× ×R>0 ×∏
p

Z×p
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Now, for a Dirichlet character

χ ∶ Gn Ð→ S1,

The Chinese Remainder Theorem for n = ∏
p
pep implies that

Z/nZ ≅ ⊕
p

(Z/pepZ)

Hence, taking the inverse limit in both sides

Ẑ = lim
←Ð
n

Z/nZ ≅ ∏
p

lim
←Ð
m

(Z/pmZ) ≅ ∏
p

Zp

and one gets a decomposition

χ =∏
p

χp ∶ ∏
p

Z×p ≅ Ẑ× Ð→ C×

Which, idèlicaly, can be viewed as a continuous character

χHecke ∶ JQ Ð→ C×

with χHecke(α,u, r) = χ(u).

3.2. Hecke L-functions

The idea, as in theorem 3.1.4, would be to construct a global L-function as an Euler
product of local L-functions, i.e. entities involving local characters χv ∶K×

v Ð→ C×.

3.2.1. Algebraic Hecke characters

From now on, we will consider the idèlic definition of Hecke characters.

Definition 3.2.2 (Algebraic homomorphism). Let K be a number field. A homomor-
phism ϕ ∶ K× Ð→ C× is said to be algebraic if for every embedding σ ∶ K ↪Ð→ C there
exists an integer nσ such that for all x ∈K

ϕ(x) =∏
σ

σ(x)nσ

Note that each real (resp. complex) embedding σv ∶K ↪Kv ≅ R corresponds to a real
(resp. complex) place v. One can then extend an algebraic homomorphism ϕ to

ϕ ∶ J∞ ÐÐ→ C×

xv z→ ∏
v real

xnσvv ⋅ ∏
v complex

xnσvv x
nσv
v
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Definition 3.2.3 (Algebraic Hecke character). A Hecke character χ ∶ JK Ð→ C× is said
to be algebraic if there exists an algebraic homomorphsim ϕ ∶K× Ð→ C× such that

ϕ(α) = χ∞(α) for all α ∈ J+∞

Where χ∞ = ∏
v∣∞

χv ∶ J∞ Ð→ C×.

More precisely, this means that there exists integers av, bv and b′v such that

(i) if v is a real place, χv(x) = xav for all x ∈ R>0.

(ii) if v is a complex place, χv(z) = zbvzb
′

v for all z ∈ C×.

Example 3.2.4. (i) Consider the Norm map

NK/Q ∶ K× ÐÐ→ C×

α z→∏
σ

σ(α)

It is an algebraic homomorphism and for K = Q, then NQ/Q = id and nσv = 1.
Recall that the idèlic absolute value

∣ . ∣A ∶ JK ÐÐ→ R>0

(xv)v z→∏
v

∣xv ∣v

defines a Hecke character as the product formula implies that ∣K×∣A = {1}. More-
over, one has

χ∞ = ∏
v∣∞

∣ . ∣v

(ii) For K = Q(i) the family of Hecke character defined in (3.3) are algebraic of type
(0,1).

(iii) In general, one can show that for every totally real field K (i.e. a field that has no
complex place), algebraic Hecke characters are all of the form

χ(α) = χfin(α) ⋅ ∣α∣
n
A

where the integer n does not depend on v, and χfin is a Dirichlet character.

3.2.5. Local L-function associated to local Hecke characters

Recall from §3.1.12 that for a number field K one can classify all local characters χv
where v is archimedean. We start thus by defining the local L-functions corresponding
to such local characters:

Universität Regensburg, Department of Mathematics, 2020 39



The generating function of Eisenstein-Kronecker numbers

(i) For Kv = R :

L(s,χv) ∶= L(χ
′∣ . ∣s) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

π−
s
2 Γ ( s

2
) if χv is unramified

π−
s+1
2 Γ ( s+1

2
) if χv is ramified

(ii) For Kv = C :

L(s,χv) ∶= L(χs,n) = (2π)
−(s+

∣n∣
2
)
Γ(s +

∣n∣

2
)

When Kv is a p-adic field, we define the local L-function corresponding to χv to be

L(s,χv) ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
1−χv(πv)

if χv is unramified

1 if χv is ramified

Proposition 3.2.6 (Global L-functions). Let χ = ∏
v
χv be a Hecke character. We define

the L-function associated to the Hecke character χ to be

L(s,χ) ∶= ∏
v

L(s,χv) which converges absolutely for R(s) > 1

Proof. Let χ = ∏
v
χv = χ

′ ⋅ ∣ . ∣sA for some s ∈ C. By proposition 3.1.18, χv is unramified for

almost all v hence one can ignore the finite set of places where it is ramified (and where
L(s,χv) = 1). Observe that

∏
v

∣L(s,χv)∣ = ∏
v

1

∣1 − χv(πv)∣
= ∏

v

1

∣1 − χ′v(πv)∣πv ∣
s∣

= ∏
v

1

∣1 − χ′v(πv)q
−s
v ∣

where qv = ∣Ov/(πv)
∣. Hence, taking the log, one has

log(∏
v

∣L(s,χv)∣) = ∑
v

log(
1

∣1 − χ′v(πv)q
−s
v ∣

) = ∑
v

R(log
1

1 − χ′v(πv)q
−s
v

)

=R(∑
v

log
1

1 − χ′v(πv)q
−s
v

)

Using the power series expansion of log ( 1
1−x

) one gets

log(∏
v

∣L(s,χv)∣) =R(∑
v
∑
k

χ′v(πv)
kq−ksv

k
)
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As χ′v is unitary and R(q−ksv ) ≤ q
−kR(s)
v , it suffices to show that the sum

∑
v
∑
k≥1

q
−kR(s)
v

k
converges for all R(s) > 1

Now, recall that for all v ∤ ∞ in K, one has that v ∣ p for some prime p and

qv = ∣Ov/πv
∣ = ∣Zp/pZp ∣

ev

= pev with ev ≥ 1. Thus, one gets that

∑
v
∑
k≥1

q
−kR(s)
v

k
= ∑
v∣p

∑
p
∑
k≥1

q
−kR(s)
v

k
= ∑
v∣p

∑
p
∑
k≥1

p−kevR(s)

k

≤ ∑
v∣p

∑
p
∑
k≥1

p−kR(s)

k

≤ n∑
p
∑
k≥1

p−kR(s)

k
since the number of places v ∣ p is ≤ [K ∶ Q] ∶= n

= n log
⎛

⎝
∏
p

1

1 − p−R(s)

⎞

⎠
= n log(∑

k≥1

k−R(s))

Where the Euler product attached to the Riemann ζ-function

∏
p

1

1 − p−R(s)
=∏

p

(∑
k≥0

p−kR(s)) = ∑
k≥1

1

kR(s)

converges absolutely for R(s) > 1.

Definition 3.2.7 (Hecke L-functions). Let χ be a Hecke character. For a complex
number s ∈ C, the global Hecke L-function associated to χ is defined to be

L(s,χ) = ∏
v∤∞

L(s,χv) = ∏
v∤∞

1

1 − χv(πv)q−sv

One also defines
Λ(s,χ) = ∏

v∣∞

L(s,χv)

where
L(χ ⋅ ∣ . ∣s) = L(s,χ)Λ(s,χ)

Example 3.2.8. The Riemann and Dedekind ζ-functions are particular examples of Hecke
L-functions: Let χ be the trivial Hecke character, thus all the local characters are trivial
for all places v of K.

(i) For K = Q:

L(s,χ) = ∏
v∤∞

L(s,χv) = ∏
v∤∞

1

∣1 − ∣πv ∣sv ∣
= ∏
v∤∞

1

1 − ∣πv ∣sv

=∏
p

1

1 − q−sp
=∏

p

1

1 − p−s
= ζ(s)
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(ii) Analogously, for an arbitrary number field K:

L(s,χ) = ∑
0≠a⊲OK

1

N(a)s
= ζK(s)

Remark 3.2.9. Recall that from remark 3.1.19, one can always recover a classical Hecke
character from an idèlic one by setting

χ̃(pv) = χv(πv) for all non-archimedean v ∤ f

Hence, the Hecke L-function is given by the L-series

L(s,χ) = ∏
v∤∞

L(s,χv) =∏
v∤f

1

1 − χv(πv)q−sv
=∏
v∤f

1

1 − χ̃(pv)N(pv)−s

= ∑
0≠a⊲OK
(a,f)=1

χ̃(a)

N(a)s

In his thesis, Tate proved that for a unitary Hecke character χ, the function L(χ ⋅ ∣ . ∣s)
(which is holomorphic on {s ∈ C ∣R(s) > 1}) admits a meromorphic continuation to the
whole s-plane with only possible poles at s = iλ and s = 1 + iλ when χ = ∣ . ∣−iλ, λ ∈ R.

Theorem 3.2.10 (Hecke). The Hecke L-function associated to a Hecke character χ = (χv)v
with conductor f on a number field K, admits an analytic continuation to the complex
plane and satisfies the functional equation

Λ(s,χ) = ε(s,χ)Λ(1 − s,χ∨) (3.6)

Where χ∨ = χ−1∣ . ∣, ∆K is the discriminant of K, ε(s,χ) a global factor given
by ε(s,χ) = ∏

v
εv(χv ∣ . ∣

s) ∈ C× and

Λ(s,χ) = L(s,χ) ⋅ (NF/Q(f)∣∆K ∣)
s
2
⎛

⎝
∏

complex v
(2π)

−(s+
∣n∣
2
)
Γ(s +

∣n∣

2
)
⎞

⎠

⎛
⎜
⎜
⎝

∏
real v

χv ramified

π−
s
2 Γ(

s

2
)

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

∏
real v

χv unramified

π−
s+1
2 Γ(

s + 1

2
)

⎞
⎟
⎟
⎠

Proof. For a proof, see [Tat67].

3.2.11. Special values of Hecke L-functions on imaginary quadratic fields

Let K be an imaginary quadratic number field, OK its ring of integers and i∞ a fixed
complex embedding so all integral ideals of OK are realised as lattices in C. Recall that
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by remark 3.1.11, an algebraic (classical) Hecke character χ on K with conductor f and
infinity type (a, b) is of the form

χ(a) = ε(α)χ−1
∞ (α) = ε(α) ⋅ αaαb

where a = (α) for all α ∈K(f), and has an associated Hecke L-series

Lf(s,χ) = ∑
0≠a⊲OK
(a,f)=1

χ(a)

N(a)s

which is absolutely convergent on {z ∈ C ∣R(s) > a+b
2 + 1}.

Consider the Ray class group

Cf(K) ∶= I(f)/Pf

and let {a1, . . . ,ah} be a set of representatives, where h is the class number of K (which
is finite). For an integer a ∈ N and s > a

2 + 1

Lf(s,χ
a) = ∑

a∈Cf(K)

χ(a)a

N(a)s
=

h

∑
i=1

∑
0≠b⊲OK
b∼ai

χ(b)a

N(b)s

Observe that, since

b ∼ ai⇔ b = βai where 0 ≠ β ∈ ai
−1 = {β ∈K ∣βai ⊲ OK},

one has a bijection

{0 ≠ b ⊲ OK ∶ b ∼ ai}
∼
ÐÐ→ {0 ≠ β ∈ a−1

i ∶ β ≡ 1 mod∗f}/O×f ∶= {u ∈ O×K ∣ u ≡ 1 mod∗f}

bz→ βb

Thus

Lf(s,χ
a) =

1

ωf

h

∑
i=1

∑
0≠β∈a−1

i

β≡1 mod∗f

χ(βai)
a

N(βai)s
=

1

ωf

h

∑
i=1

χ(ai)
a

N(ai)s
∑

0≠β∈a−1
i

β≡1 mod∗f

χ(β)a

∣β∣2s

=
1

ωf

h

∑
i=1

χ(ai)
a

N(ai)s
∑

0≠β∈a−1
i

β≡1 mod∗f

β
a

∣β∣2s

where ωf = ∣O×f ∣. Note that one has a bijection

fa−1
i

∼
ÐÐ→ {β ∈ a−1

i ∶ β ≡ 1 mod∗f}

γ z→ γ + αi where αi ∈ a−1
i ; αi ≡ 1 mod∗f
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Hence

Lf(s,χ
a) =

1

ωf

h

∑
i=1

χ(ai)
a

N(ai)s
∑

γ∈fa−1
i

(γ + αi)
a

∣γ + αi∣2s

=
1

ωf

h

∑
i=1

∑
γ∈fa−1

i

χ(ai)
a

N(ai)s
(γ + χ(αi))

a

∣γ + χ(αi)∣2s
since χ is algebraic of ∞-type (1,0)

=
h

∑
i=1

∑
γ∈fa−1

i

(χ(αaa) + χ(a)γ)
a

∣χ(αaa) + χ(a)γ∣
2s

Here we used the fact that N(ai) = ∣χ(ai)∣
2 and ωf = 1. Indeed, for the first assertion,

observe that the following Hecke character is of finite order (has ∞-type (0,0))

ϕ ∶ a ∈ Cf(K) z→
∣χ(a)∣2

N(a)
= χ(a)

↑

(1,0)

↓

(0,1)

χ(a)N(a)−1

↑

(-1,-1)

∈ R>0

Since the only finite (multiplicative) subgroup of R>0 is {1}, ϕ is trivial. ωf = 1 follows
from the fact that χ has ∞-type (1,0).

Thus, this relates the Hecke L-series associated to an algebraic Hecke character to the
Eisenstein-Kronecker-Lerch series in (2.3.1) and one gets the following:

Theorem 3.2.12. Let χ be a Hecke character of conductor f and ∞-type (1,0). Then
one has

Lf(s,χ
a) = ∑

a∈Cf

K∗
a (χ(αaa),0, s; Λ) =∑

a∈Cf

∑
γ∈fa−1

(χ(αaa) + χ(a)γ)
a

∣χ(αaa) + χ(a)γ∣
2s

where Λ ∶= χ(a)fa−1 and αa ∈ a
−1 such that αa ≡ 1 mod∗f.

More generally, we have the following corollary

Corollary 3.2.13. Let χ be a Hecke character of conductor f and ∞-type (a, b) with
b − a > 0. Then one has

Lf(s,χ) =
1

ωf
∑
a∈Cf

χ(a)

N(a)s
K∗
b−a (αa,0, s − a; fa−1)

where ωf = ∣O×f ∣ and αa ∈ a
−1 such that αa ≡ 1 mod∗f. In particular,

Lf(0, χ) =
1

ωf
∑
a∈Cf

χ(a)e∗a,b (αa,0; fa−1) (3.7)
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Proof. By the same reasoning as in the proof of theorem 3.2.12, one gets

Lf(s,χ) =
1

ωf
∑
a∈Cf

∑
0≠β∈a−1

β≡1 mod∗f

χ(βa)

N(βa)s
=∑

a∈Cf

χ(a)

N(a)s
∑

0≠β∈a−1

β≡1 mod∗f

χ(β)

∣β∣2s

=∑
a∈Cf

χ(a)

N(a)s
∑

0≠β∈a−1

β≡1 mod∗f

βaβ
b

∣β∣2s
since χ is algebraic of ∞-type (a, b)

=∑
a∈Cf

χ(a)

N(a)s
∑

0≠β∈a−1

β≡1 mod∗f

β
b−a

∣β∣2(s−a)

The result follows in the same manner.

3.3. Application: the case of a CM elliptic curve

“The theory of complex multiplication is not only the most beautiful part of
mathematics but also of all science.”

David Hilbert

3.3.1. Complex multiplication

We go back to our setting in §2.3.1. Let E(C) ≅ C/Γ be an elliptic curve with origin

O = {0}, where Γ = ω1Z ⊕ ω2Z ⊂ C is a lattice with I(τ) > 0, τ = (ω2

ω1
). One has en

equivalence of categories

Obj ∶ Elliptic curves over C
Morphisms ∶ Isogenies

GAGA
⇔

Obj ∶ 1-dim complex tori

Morphisms ∶
Non-constant holomorphic maps

satisfying f(O) = O

⇔
Obj ∶ Lattices Γ in C

Morphisms ∶ Hom(Γ1,Γ2) = {z ∈ C× ∣ zΓ1 ⊂ Γ2}
(3.8)

This gives End(E) ≅ {z ∈ C ∣ zΓ ⊂ Γ} a structure of a subring of C and for every
z ∈ End(E):

z =m + nτ and zτ =m′ + n′τ

Thus, End(E) = Z or End(E) is isomorphic to an order in the imaginary quadratic field
Q(τ), i.e. a subring O of Q(τ) that is finitely generated as a Z-module and contains a
Q-basis of Q(τ). By the Lefschetz principle, the same is true for elliptic curves over any
field K of charK = 0.
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Definition 3.3.2 (CM elliptic curve). Let E be an elliptic curve over F a subfield of
C. If End(E) ≅ O where O is an order of an imaginary quadratic number field K, the
elliptic curve E(F) is said to have complex multiplication by O. One writes “CM”
for short.

Given an elliptic curve E(C) with complex multiplication by the maximal order OK ,
we fix an embedding i∞ ∶ K ↪Ð→ C so that every integral ideal a of OK can be realised
as a lattice Γa in C. One has then an isomorphism E ≅ C/Γa

which is fixed by OK .
Conversely, given an integral ideal Γ ⊲ OK , with Γ = Zω1 +Zω2 and α ∈ i∞ (End(EΓ)),

αω1 =m1ω1 +m2ω2 ⇒ α ∈ Q(ω1, ω2) ⊂ Q(τ)

Hence, as we have seen, α is an algebraic integer and thus, it belongs to OK . Hence we
have the following

End(EΓ) ≅ OK ⇔ Γ is homothetic to some integral ideal Γ′ ⊲ OK

From the equivalence in (3.8) one has a 1-to-1 correspondence between ideal classes in
Cl(K) and the set E llC(K) of all C-isomorphism classes of elliptic curves with complex
multiplication by OK , given by

Cl(K)
∼
ÐÐ→ E llC(K)

[a] z→ C/a (3.9)

For a non zero fractional ideal Γ, a−1Γ is also a fractional ideal. One thus define an action
of Cl(K) on E llC(K) (that is clearly simply transitive by (3.9)) given by

[a] ⋅ [C/Γ] ∶= [C/
(a−1Γ)

]

Recall the modular discriminant of the lattice Γ:

∆(Γ) ∶= g3
2 − 27g2

3 = q∏
n≥1

(1 − qn)24 with q = e2πiτ (3.10)

along with its j-invariant function

j(Γ) =
1728g3

2

g3
2 − 27g2

3

=
(12g2)

3

∆(Γ)
(3.11)

which is invariant under multiplication by z ∈ C×. We will denote j(E) (resp. ∆(E)) the
j invariant (resp. modular discriminant) of the lattice associated to E under complex
uniformization. If one fixes an automorphism σ ∈ Aut(C) and considers the elliptic curve
Eσ(C) given by the Wierstrass equation

Eσ ∶ Y 2 = 4X3 − σ(g2)X − σ(g3),

then this induces a group homomorphism

σ ∶ E(C) Ð→ Eσ(C)

(x, y) z→ (σ(x), σ(y))

O z→ O
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Lemma 3.3.3. Let E be an elliptic curve over C with CM by OK . Then j(E) is an
algebraic number.

Proof. One easily sees that

End(E) = End(Eσ) = OK and j(Eσ) = j(E)σ

Thus Eσ has CM by OK and by (3.9)

{j(E)σ ∣ σ ∈ Aut(C)} is finite.

Hence j(E) is algebraic.

Remark 3.3.4. One can show even more: In [ST68], J.P. Serre and J. Tate show (using
Galois representations or what is more known as l-adic representation) that E has po-
tential good reduction at all primes p, which implies∗ that j(E) is integral at all primes.

We will present the main theorem of complex multiplication due to Shimura [Shi71]

Theorem 3.3.5 (Main Theorem of Complex Multiplication). Let K be an imaginary
quadratic field, with ring of integers OK and E(C) be an elliptic curve with CM by OK .
Let σ ∈ Aut(C) such that σ∣Kab = [x,K] † for an idele x ∈ JK .
Fix an analytic isomorphism f ∶ C/Γa

∼
ÐÐ→ E(C) for some fractional ideal a of K, then

there exists a unique complex analytic isomorphism f ′ ∶ C/
x−1Γ

∼
ÐÐ→ Eσ(C) such that the

following commutes
K/a

K/
x−1a

E(C) Eσ(C)

x−1

f f ′

σ

The statement is also true for elliptic curves having CM with non-maximal orders, for
a proof see [Shi71](Theorem 5.4) or [Lan87](1, Ch. 8, 10).

3.3.6. Hecke L-function attached to a CM elliptic curve

Let E be an elliptic curve over a field F with CM by OK whereK is a quadratic imaginary
field with K ⊂ F. The advantage in having complex multiplication, is that to any CM
elliptic curve, one can use theorem 3.3.5 to construct a Hecke character associated it, i.e.
a continuous homomorphism

χE ∶ JF Ð→ C× such that χE(F×) = 1

with some additional properties:
∗See Proposition B.3.5 in Appendix B
†This is the Artin reciprocity map JK ÐÐ→ Gal(Kab/K)

x z→ [x,K] (see Appendix B)
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Theorem 3.3.7 (Hecke character associated to a CM elliptic curve). Let E be an elliptic
curve over F with CM by OK and K ⊂ F. There exists a Hecke character

χE ∶ JF/F× Ð→ C×

satisfying: For all x = (xv)v ∈ JF such that NF/K(x) = y ∈ JK

χE(x)OK =
y

y∞
OK ⊆ C

Proof. Let σ ∈ Aut(C) such that σ = [x,F] = (x,Fab/F) ∈ Gal(Fab/F) (This is always
possible because j(E) ∈ F, in fact j(E) generates the maximal abelian extension of K)
then by the properties of the Artin reciprocity map

σ∣Kab = (x,Fab/F)∣Kab = (y,Kab/K) = [y,K]

Hence, by theorem 3.3.5, one has an analytic isomorphism f ′ ∶ C/
y−1Γ

∼
ÐÐ→ Eσ(C) such

that the following diagrams commute:

K/a
K/

y−1a

E(C) E(C)

⋅y−1

f f ′

σ

↺ ⇒

K/a
K/a

E(C) Eσ(C)

⋅βy−1

f g

σ

↺

Here, since σ fixes F, Eσ(C) = E(C) and so there exists a β ∈K× such that βy−1a = a as
Γa and Γy−1a must be homothetic. This means:

K/a
K/a

E(C) E(C)

⋅αy−1

f g

σ)

where, say, g = [α]○f . Thus, by choosing α = ϕ(β) for [ϕ] ∈ OK , one has the commutative
diagram

K/a
K/a

E(Fab) E(Fab)

⋅αy−1

f f ′′

(x,Fab/F)

and αOK = (y) ⊲K (3.12)

Remark 3.3.8. (i) Note that such an α always exists and is unique, since otherwise,
for another such α′ ∈K×

K/a
K/a

K/a

⋅αy−1⋅α′y−1
⇒ ⋅αα′ = idK/a

⇒ α = α′
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(ii) α = αx depends on x but not on the isomorphism f ∶ C/Γa

∼
ÐÐ→ E(C). Indeed, for

any other choice g ∶ C/Γ′a

∼
ÐÐ→ E(C), there exists a β′ ∈ K× such that β′a′ = a and

g ○ f−1 ∈ Aut(E). This implies that g(⋅) = f(uβ′⋅) for u ∈ O×K . Thus, from the
diagram (3.12), one has

K/a
K/a

E(Fab) E(Fab)

E(Fab) E(Fab)

⋅αy−1

g g

(x,Fab/F)
f(uβ′⋅) f(uβ′⋅)

(x,Fab/F)

and for all z ∈K/a:

g(z)(x,F
ab/F) = f(uβ′z)(x,F

ab/F) =
↑

by theorem 3.3.5

f(αy−1uβ′z) = g(αy−1z)

Now, define

χE ∶ JF Ð→ C×

x = (xv)v z→ y−1
∞ αx

where y∞ ∈ C× is the component of y ∈ JK corresponding to the unique archimedean
place on K.

• χE is a group homomorphism: For x,x′ ∈ JF and by uniqueness in the above remark,
one sees that

α(xx′) = αxαx′

• χE(F×) = 1: For any β coming from F×, (x,Fab/F) = 1 for the idèle x ∈ JF with
αx = ϕ(β) for [ϕ] ∈ OK . Hence, by (3.12) once again,

αxOK = (y)OK = NF/K(β)OK

one finally gets that αx = NF/K(β) and clearly

NF/K(β)∞ = ∏
i∞∶F↪C
i
∞∣K=1

βi∞ = NF/K(β)

• χE is continuous: The proof uses the same argument as in the proof of (3.1.18)
using remark 3.1.13.
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Hence, one has a Hecke L-function attached to the Hecke character χE . One relates
this Hecke L-function to the global L-function of a CM elliptic curve through Deuring’s
theorem:

Theorem 3.3.9 (Deuring). Let E be an elliptic curve over F with CM by OK and suppose
that K ⊂ F. Then the global L-series of E(F) is given by

L(E(F), s) = L(s,χE)L(s,χE)

(See (B.3.10) in appendix B for a sketch of the proof).

Now, combining this with theorem 3.2.10, we show that the L-function of a CM elliptic
curve has an analytic continuation and satisfies a functional equation as follow:

Corollary 3.3.10. Let E be an elliptic curve over F with CM by OK, K ⊂ F. Then the
L-function of E(F) has an analytic continuation to the entire complex plane and satisfies
the functional equation

Λ(E(F), s) = ε(s,χ)Λ(E(F),2 − s)

Where ε(s,χ) = ±1, f the conductor of χE, ∣∆F∣ the absolute discriminant of F and

Λ(E(F), s) = L(E(F), s) ⋅ (NF/Q(f)∣∆F∣)
s
(2π)−s[F∶Q]Γ(s)[F∶Q]

Proof. Let E be an elliptic curve over F with Hecke characters χE . Clearly, χE and χE
have the same conductor f and only [F∶Q]

2 complex embeddings. Recall that for an ideal
a ∈ If:

χE(a)χE(a) = NK/Q (χE(a)) = NF/Q(a) ⇒ χE(a) = χE(a)
−1NF/Q(a)

⇒ L(s,χE) = ∑
0≠a⊲OK
(a,f)=1

χE(a)

NF/Q(a)s
= ∑

0≠a⊲OK
(a,f)=1

χ−1
E (a)

NF/Q(a)s−1
= L(s − 1, χ−1

E )

Thus, one has by definition B.3.8 and cB.3.10:

Λ(E(F), s) = (NF/Q(f)∣∆F∣)
s
(2π)−s[F∶Q]Γ(s)[F∶Q]L(s,χE)L(s − 1, χ−1

E )

= (NF/Q(f)∣∆F∣)
1
2 (

Γ(s)

8πΓ(s − 1)
)

[F∶Q]

2

Λ(s,χE)Λ(s − 1, χ−1
E )

= (−1)
[F∶Q]

2 ε(χE)ε(χ
−1
E ) (NF/Q(f)∣∆F∣)

1
2 (

Γ(s)

8πΓ(s − 1)
)

[F∶Q]

2

Λ(2 − s,χE)Λ(s − 1, χ−1
E )

= ε(χE) (NF/Q(f)∣∆F∣)
2−s

(2π)(2−s)[F∶Q]Γ(2 − s)[F∶Q]L(s,χE)L(s − 1, χ−1
E )

= ε(χE)Λ(E(F),2 − s).
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Where ε(χE) = (−1)
[F∶Q]

2 ∏
v
εv(χv, s)εv(χ

−1
v , s) is the global epsilon factor in theorem 3.2.10,

which has norm 1. Although, calculations show that

ε(χE) = ε(χE) ⇒ ε(χE) = ±1

Remark 3.3.11. More generally, the result is also true when the field of definition of E(F)
does not contain the CM field K. In this case:

Λ(E(F), s) = L(E(F), s) ⋅ (NF′/Q(f
′)∣∆′

F∣)
s
(2π)−s[F∶Q]Γ(s)[F∶Q]

where F′ ∶= FK and f′ is the conductor of the Hecke character χ′E ∶ JF′/(F′)× Ð→ C×

attached to E(F′).

3.3.12. Conjectures related to special values of L-function and further
discussion

We finish this section by highlighting the importance of the study of special values of
L-functions associated to elliptic curves. One of the main conjectures about this topic is
known as the Hasse-Weil conjecture:

Conjecture 3.3.13 (Hasse-Weil). Let E be an elliptic curve over a number field K.
The L-function of E(K) has an analytic continuation to the entire complex plane, and
satisfies the functional equation

Λ(E, s) = ε ⋅Λ(E,2 − s)

with ε = ±1, f the conductor of χE and

Λ(E, s) = L(E, s) ⋅ (NK/Q(f)∣∆F∣)
s
2 (2π)−s[K ∶Q]Γ(s)[K ∶Q]

This conjecture has been verified for the class of CM elliptic curves as seen in corol-
lary 3.3.10. This leads to a whole set of conjectural properties known as the Birch and
Swinneton-Dyer conjectures. Roughly, these conjectures describe somehow, the set of
rational solutions to equations defining an elliptic curve. The most famous formulation
of the Birch and Swinneton-Dyer conjecture links the arithmetic of the elliptic curve E
over a number field K, to the behaviour of its L-function at s = 1:

Conjecture 3.3.14 (Birch and Swinneton-Dyer - 1st). Let E be an elliptic curve over
a number field K, with L-function having an analytic continuation to the complex plane.
Let rE(K) denote the rank of E(K). Then rE(K) is equal to the order of the zero of
L(E(K), s) at the point s = 1.

Wiles and Coates showed in [CW77] that in the case where the elliptic curve had CM,
one has the following:
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Theorem 3.3.15. Let E be a CM elliptic curve over a number field K ⊂ F. Suppose
F = Q or F =K. If rE(K) ≠ 0, then

L(E(F),1) = 0

This result has been extended to fields F which are abelian extensions of K with some
particular assumptions (see [Art78]) and K. Rubin has given in [Rub81] some precise
information about the order of vanishing of L(E(F), s) at s = 1.
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4
Poincaré bundle and reduced theta

functions

The theory of theta function appears as a very important part of the study of Abelian
varieties. In modern terminology, these functions appear as holomorphic sections of line
bundles over an Abelian variety. We introduce the general theory of theta functions
and show how; in the case of an elliptic curve; it is related to the Eisenstein-Kronecker
numbers e∗a,b.

4.1. Review of the classical theory of theta functions

Let V be a g-dimensional complex vector space, and Γ ≅ Z2g a lattice in V . A theta
function is a holomorphic function on V which is quasi-periodic (recall that the only
holomorphic Γ-periodic functions are the constant ones) with respect to Γ i.e. for all
γ ∈ Γ, there exists a holomorphic map fγ ∶ V → C such that

• θ(z + γ) = fγ(z)θ(z),

• fγ is a factor of automorphy.

In a more modern terminology, this reads into following:

4.1.1. Meromorphic sections of a line bundle

Consider the complex torus T ∶= C/Γ. It is a complex Lie group of dimension g with a
holomorphic covering map π ∶ V → T. Moreover, the complex structure on V induces the
decomposition

HomR(V,C) = V ∗ ⊕ V
∗

where

V ∗ ∶= HomC(V,C) = {C−linear forms l} and V
∗
∶= HomC(V ,C) = {C−anti-linear forms l}

This decomposition induces the decomposition

H1(T,C) ≅H1,0(T) ⊕H0,1(T)
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where H1,0(T) is the subspace spanned by the classes of d z1, . . . , d zg and H0,1(T) is the
one spanned by the classes of d z1, . . . , d zg. The isomoprhism, in this case, is given by

δ1 ∶ HomR(V,C)
∼
ÐÐ→H1(T,C)

l z→ [d l]

Recall that the Picard group Pic(X) of a complex manifoldX is the group of isomoprhism
classes of holomorphic line bundles on X. It is canonically isomorphic to H1(X,O×

X).
One has an exact sequence of sheaves, commonly known as the exponential exact sequence

0 Ð→ ZX Ð→ OX
exp
ÐÐ→ O×

X Ð→ 1
f z→ exp(2πif)

This gives rise to a long exact sequence in cohomology

H1(X,Z) Ð→H1(X,OX) Ð→H1(X,O×
X)

c1
ÐÐ→H2(X,Z) Ð→H2(X,OX).

In particular, for X = V (≅ Cg), by Dolbeault’s theorem and the Poincaré δ-lemma (See
[PG78] Dolbeaut Theorem p.45 - Computation 2. p.46), one sees that

H1(V,OV ) ≅ 0 and H2(V,Z) ≅ 0.

Thus, Pic(V ) is trivial. Now consider a line bundle L on T, then one has the following
diagram

π∗L = V ×T L L

V Tπ

One lifts the group action of Γ on V to an action of π∗L. Since π∗L is trivial as a line
bundle on V , by choosing a trivialization π∗L

∼
ÐÐ→ V × C, one gets an action of Γ on

V ×C and every line bundle L on T is the quotient of V ×C by this action.

Now, every γ ∈ Γ acts linearly on the fibres, i.e

γ ⋅ (ξ, v) = (v + ξ, eγ(ξ)v) for γ ∈ Γ, v ∈ V, ξ ∈ C

where eγ is a holomorphic invertible function on V . Thus, for it to be a group action,
one needs the following cocycle condition∗:

eγ1+γ2(v) = eγ1(v + γ2)eγ2(v) (4.1)
∗From a Group Cohomology point of view, this is the cocycle condition for the Čech 1-cocycle map

Γ ÐÐ→ H0(V,O∗

V )
γ z→ eγ
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Such functions eγ are called multipliers or multiplicators and a family (eγ)γ defines a
line bundle L on T.

Hence, given a family of multipliers (eγ)γ , one has a corresponding theta function
θ ∶ V Ð→ C defined by

θ(v + γ) = eγ(v)θ(z) for all γ ∈ Γ, v ∈ V

Moreover, the space H0(T,L) of global holomorphic sections of V can be identified with
the space of theta functions characterised by a family of multipliers (eγ)γ as follow:

• A section s of the line bundle V ×TL is of the form v z→ (v, θ(v)) where θ ∶ V Ð→ C
is holomorphic. It is invariant under the action of Γ if and only if θ is a theta
function for (eγ)γ . Now a global section s of L lifts to a section ŝ ∶= π∗s of V ×T L

defined by z z→ (z, s ○ π(z)) and one has

ŝ (v + γ) = (v + γ, s ○ π(v)) = γ ⋅ ŝ (v + γ)

• On the other hand, every section that is Γ-invariant MUST come from a section of
L.

We end this section by the following remark:

Remark 4.1.2. The line bundle L ⊗ L′ is defined by the family of multipliers (eγe
′
γ)γ∈Γ

where L,L′ are defined by the families of multipliers (eγ , e
′
γ)γ∈Γ, respectively. (observe

that this is nothing but the quotient V ×(C⊗C) by the action γ ⋅(v, ξ⊗ξ′) = (v+γ, eγe
′
γξ⊗

ξ′)). This induces a surjective group homomorphism

H0(V,O∗
V ) Ð↠ Pic(T)

whose kernel consists of coboundaries† i.e elements eγ(v) =
h(v+γ)
h(v) where h ∶ V Ð→ C× is

holomorphic (this comes from the fact that such elements must define a line bundle that
admits non-everywhere vanishing sections).

4.1.3. Reduced Theta functions

The next step would be to construct a canonical family of multipliers that would uniquely
determine a line bundle, and thus the corresponding theta function. This will involve
Hermitian forms on V . Recall that a hermitian form H on V is an R-bilinear form
which is C-antilinear in the first argument and C-linear in the second. We will write
H(x, y) = S(x, y) + iE(x, y), where S is a symmetric R-linear form on V and E a skew-
symmetric one. Moreover one has that

†This is nothing but the coboundary condition for the 1-cocycle eγ . Moreover, one has a group isomor-
phism H1 (Γ,H0(V,O∗

V )) ≅ Pic(T)
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• E(x, y) = E(ix, iy), S(x, y) = E(x, iy) and there is a 1-to-1 correspondence

Her(V ) ∶= {
Hermitian forms
H ∶ V × V Ð→ C } ←→ Alt2(V,R) ∶= {

Alternating bilinear forms
E ∶ V × V Ð→ R }

• H is non-degenerate ⇔ E is non-degenerate ⇔ S is non-degenerate.

From now on, we suppose that H is a hermitian form such that E(Γ × Γ) ⊆ Z. A
semi-character χ associated to a hermitian form H is a map χ ∶ ΓÐ→ S1 satisfying:

χ(γ1 + γ2) = exp(πiE(γ1, γ2))χ(γ1)χ(γ2) for all γ1, γ2 ∈ Γ.

Note that by definition, unitary characters on Γ are semi-characters associated to the
hermitian form H = 0. We denote by P(Γ) the set of pairs (H,χ) (it actually is a group
under the law (H1, χ1) ⋅ (H2, χ2) = (H1 +H2, χ1χ2)).
Pose

eγ(v) = χ(γ) exp(πH(v, γ) +
π

2
H(γ, γ))

Observe that, for γ1, γ2 ∈ Γ and v ∈ V :

eγ1+γ2(v) = χ(γ1)χ(γ2) exp(πiE(v, γ) + πH(v, γ1 + γ2) +
π

2
H(γ1 + γ2, γ1 + γ2))

= χ(γ1) exp(πH(v + γ2, γ1) +
π

2
H(γ1, γ1)) ⋅ χ(γ2) exp(πH(v, γ2) +

π

2
H(γ2, γ2))

= eγ1(v + γ2)eγ2(v)

Thus, (eγ)γ∈Γ is a family of multipliers since eγ satisfies the cocycle condition (4.1). Each
pair (H,χ) determine (through (eγ)γ∈Γ) a line bundle that will be denoted by L(H,χ)
and one has a group homomorphism

P(Γ) ÐÐ→ Pic(T)

(H,χ) z→ L(H,χ)

by noticing that

L(H1, χ1) ⊗ L(H2, χ2) ≅ L(H1 +H2, χ1χ2)

inv∗L(H,χ) = L(H,χ−1) where inv ∶ v ∈ Tz→ −v ∈ T.

Appell-Humbert theorem shows that it is an isomorphism ([DM70], Chapter 1, Section
2, p.20), which classifies all isomorphism classes of holomorphic line bundles on T.

Theorem 4.1.4 (Appell-Humbert). There is a canonical isomorphism of exact sequences

1 Hom(Γ,S1) P(Γ) {H ∈ Her(V ) ∣E(Γ × Γ) ⊆ Z} 0

1 Pic0(T) Pic(T) Im (H1(X,O×
X)

c1
ÐÐ→H2(X,Z)) 0

≃ ≃ ≃
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Remark 4.1.5 (Chern class). For a line bundle L(H,χ) ∈ Pic(T) the image c1(L) under
the map

c1 ∶H
1(X,O×

X) Ð→H2(X,Z)

is called the first Chern class of L(H,χ). It can be associated to a (unique) alternating
form E ∈ Alt2(Γ,Z) (or a Hermitian form H ∈ Her(T)). Hence, Chern classes of line
bundles on T can be identified with hermitian forms on V satisfying E(Γ,Γ) ⊆ Z.
An important consequence of Ampell-Humbert theorem is the following: Consider the

translation map

tv ∶ TÐÐ→ T
z z→ z + v

By pulling back along π, one gets a map

t∗π(v)L ≅ L′ L

V Tπ

where, clearly, L′ is defined by the multipliers (t∗π(v)eγ)γ∈Γ. However, direct calculations
show that for v ∈ V :

t∗π(v)eγ(v
′) = eγ(v

′ + v) = eγ(v
′) exp (πH(v, γ)) (4.2)

By remark 4.1.2, one can multiply both sides by a coboundary h(v+γ)
h(v) without changing

the associated line bundle t∗π(v)L. Thus, for h ∶ uz→ exp (−πH(v, u)) :

t∗π(v)eγ(v
′)
h(v + γ)

h(v)
= χ(γ) exp(πH(v′, γ) +

π

2
H(γ, γ)) exp (2πiIH(v, γ))

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

χ(γ) exp (2πiE(v, γ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=αv(γ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

exp(πH(v′, γ) +
π

2
H(γ, γ)) .

Define the character

αv ∶ ΓÐÐ→ S1

γ z→ exp (2πiE(v, γ))

Then, one gets

t∗π(v)L(H,χ) ≅ L(H,χ
′) where χ′(γ) = χ(γ)αv(γ) (4.3)

This implies, in particular, the following:
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Theorem 4.1.6 (theorem of the square). For all v,w ∈ V and line bundle L on T

t∗π(v)+π(w)L⊗L = t∗π(v)L⊗ t
∗
π(w)L.

Moreover, one has a group homomorphism

φL ∶ TÐ→ Pic0(T)

z z→ t∗zL⊗L
−1

0z→ t∗0L⊗L
−1 ≅ OT

with
KL ∶= ker(φL) = {z ∈ T ∣ t∗zL ≅ L}

Remark 4.1.7. Note that the morphism φL factors through

T α
ÐÐ→ Hom(Γ,S1)

π(v) = z z→ (χ0 ∶ γ → αv(γ))

∼
ÐÐ→ Pic0(T)

z→ L(0, χ0)

Since Γ is a free Z-module, one has a group homomorphism ϕ ∶ Γ Ð→ R such that for
any χ ∈ Hom(Γ,S1):

χ(γ) = αv ○ ϕ(γ)

Moreover,

(i) If E is non-degenerate, then φL is surjective: In fact, by non-degeneracy, there
exists an element v ∈ V such that ϕ(z) = E(z, v) (by R-linear extension) and
thus, ϕ ○ π = χ. This shows that in the case of a non-degenerate line bundle
L, φL is surjective and has finite kernel (as E induces an R-linear isomorphism
V ≅ HomR(V,R) which identifies -as one will see later- {v ∈ V ∣E(v, γ) ∈ Z ∀γ ∈ Γ}

with the dual lattice Γ∨).

(ii) If E is unimodular, then φL is an isomorphism: In the next section, one sees that
Pic0(T) can be endowed with a complex structure, as a complex torus. One shows
that in this case, φL is an isomorphism of complex tori.

Definition 4.1.8 (reduced theta function). A theta function ϑ, associated to a mero-
morphic section of a line bundle of the form L(H,χ), is called a reduced or canonical
theta function. In other words, a reduced theta function ϑ is a meromorphic function
on V satisfying for v ∈ V and γ ∈ Γ:

ϑ(v + γ) = χ(γ) exp(πH(v, γ) +
π

2
H(γ, γ))ϑ(v) (4.4)

Remark 4.1.9 (Meromorphic sections and divisors). Recall that on a compact manifold,
a meromorphic function is uniquely determined, up to a constant, by its divisors. In our
setting, given a divisor D ∈ Div(T), there is an associated line bundle OT(D) = [D] whose
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sections on some open U are meromorphic functions (f) + D∣U . Conversely, defining
a meromorphic section s of a line bundle L (through local trivializations), s has an
associated (and well defined) divisor D = (s) with L ≅ OT(D). Hence, by choosing
L = L(H,χ), one associates to any divisor D ∈ Div(T), a unique reduced theta function
ϑD; determined up to a constant. In §4.2.5 an example of a reduced theta function,
corresponding to the divisor D = [0] will be constructed.

4.1.10. Translation of reduced theta functions

Let L(H,χ) be a line bundle on T. one has from (4.3), that

t∗z=π(v)L(H,χ) ≅ L(H,χ ⋅ αv)

Thus, any meromorphic section sD of L(H,χ) induces a reduced theta function ϑD on
L(H,χ ⋅ αv), corresponding to a meromorphic section t∗zsD. Extend the semi-character
χ into a map χ̃ ∶ V Ð→ C× and define

e ∶ V × V Ð→ C×

(v,w) z→ ew(v) ∶= χ̃(w) exp(πH(v,w) +
π

2
H(w,w)) (4.5)

Clearly, one sees that the restriction e∣V ×Γ defines a system of multipliers (eγ)γ∈Γ for ϑD.
Since ϑD(v+γ) = eγ(v)ϑD(v), it is only natural to define the translation of ϑD to be the
meromorphic function

ϑ+wD (v) ∶= ew(v)
−1ϑD(v +w). (4.6)

One first observes that for γ ∈ Γ

ϑ+wD (v + γ) = ew(v + γ)
−1ϑD(v +w + γ)

= exp [−πH(γ,w)] eγ(v +w)ew(v)
−1ϑD(v +w)

= χ(γ) exp [πH(w,γ) − πH(γ,w)] exp [πH(v, γ) +
π

2
H(γ, γ)]ϑ+wD (v)

= χ(γ) exp [2πiE(w,γ)] exp [πH(v, γ) +
π

2
H(γ, γ)]ϑ+wD (v).

Thus, by (4.2), ϑ+wD is indeed a reduced theta function for t∗zL(H,χ); associated to the
section t∗zs. Although the family (ew)w∈C is clearly not a multiplier for w ∈ C ∖ Γ, it
nevertheless satisfies the following properties:

Proposition 4.1.11. Let w1,w2 ∈ V and χ be a semi character for H ∈ Her(V ). Let

χ(w1,w2) ∶= χ̃(w1 +w2)χ̃(w1)
−1χ̃(w2)

−1 exp (2πiE(w1,w2))

Then, one has the following properties:

(i) ew1+w2(v) = χ(w1,w2)ew1(v +w2)ew2(v).

Universität Regensburg, Department of Mathematics, 2020 59



The generating function of Eisenstein-Kronecker numbers

(ii) ϑ+w1
D (v +w2) = χ(w1,w2)ew1(v)ϑ

+(w1+w2)
D (v).

(iii) (ϑ+w1
D )+w2 = χ(w1,w2)ϑ

+(w1+w2)
D .

(iv) (ϑ+w1
D )+w2 = exp (2πiE(w1,w2)) (ϑ

+w2
D )+w1.

Proof. (i) From (4.5) one has

ew1+w2(v) = χ̃(w1 +w2) exp(πH(v,w1 +w2) +
π

2
H(w1 +w2,w1 +w2))

= χ(w1,w2)χ̃(w2) exp(πH(v +w1,w2) +
π

2
H(w2,w2))

χ̃(w1) exp(πH(v,w1) +
π

2
H(w1,w1)) exp (−πH(w1,w2) + πH(w2,w1))

= χ(w1,w2)ew1(v +w2)ew2(v)

(ii) From (i) one has ew1(v +w2)
−1 = χ(w1,w2)ew1+w2(v)

−1ew2(v). Thus, by (4.6)

ϑ+w1
D (v +w2) = ew(v +w2)

−1ϑD(v +w1 +w2)

= χ(w1,w2)ew2(v)ew1+w2(v)
−1ϑD(v +w1 +w2)

= χ(w1,w2)ew1(v)ϑ
+(w1+w2)
D (v)

(iii) and (vi) follow easily from (ii).

4.1.12. Abelian varieties and the Lefschetz embedding

In this last part, we introduce general Abelian varieties and highlight one of the most
classical and known applications of the theory of theta functions, known as the Lefschetz
theorem.

Definition 4.1.13 (Abelian varieties). Let T = V /Γ be a complex torus of dimension g,
L ∈ Pic(T) and H = c1(L) its first Chern class.

(i) If the hermitian form H with E(Γ × Γ) ⊆ Z is positive definite, it is called a
polarization of the complex torus T.
If, moreover, H is unimodular, the polarization is said to be principal.

(ii) A complex torus T admitting a polarization H is called an Abelian variety.

By abuse of notation, sometimes one calls the line bundle L = L(H,χ) -whose hermitian
form is positive definite- a polarization, and the pair (X = T,L) an Abelian variety. The
next section will provide (by construction) two main examples of Abelian varieties: One
important example being elliptic curves, which are 1-dimensional principally polarised
Abelian varieties (or p.p.a.v. for short).
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Theorem 4.1.14 (Lefschetz embedding). Let L be a non-degenerate holomorphic line
bundle on a g-dimensional complex torus T. For g ≥ 3, the global sections of L define an
analytic embedding of T as a complex sub-manifold of Pm for some m.

Proof. See for example [Lan82](IV, §5 Theorem 8)

In other words, for all g ≥ 3, a choice of a polarisation on T makes φL(T) into an alge-
braic projective variety of Pm by Chow’s theorem ([PG78](Chapter 1 § 3)). In [VdV75],
one has more information about this embedding:

Theorem 4.1.15. No Abelian variety of dimension g ≥ 3 can be embedded into P2g

In particular, from the proof of this theorem, one recovers a very well known result:
One sees that the only possibility for Abelian varieties of dimension g = 1 i.e. elliptic
curves over C, are smooth algebraic cubic curves in P2 of the form

E ∶ y2 + (a1x + a3)y = x
3 + a2x

2 + a4x + a6

For g = 2, 2-dimensional Abelian varieties are called Abelian surfaces, and the only ones
embeddable in P4 are Abelian surfaces of degree 10 (see for example [HM73] for details)
the rest are all embedded in P5.

4.2. The Poincaré bundle of an Abelian variety

To any Abelian variety (X,L), there is a uniquely determined line bundle P on X ×X∨,
to which one can associate the dual Abelian variety (X∨,P) as follow:

4.2.1. The Poincaré bundle

For a C-anti-linear form l ∶ V → C, define the complex dual torus to be

T∨ ∶= HomC(V,C)/Γ∨

where Γ∨ is the dual lattice defined as

Γ∨ ∶= {l ∈ HomC(V,C) ∣ ⟨ l,Γ ⟩ ∶= I l(Γ) ⊆ Z}.

It is, indeed, a lattice in the C-vector space V
∨
∶= HomC(V,C) as one has a canonical

R-pairing:

⟨ ⋅, ⋅ ⟩ ∶ V
∨
× V ÐÐ→ R

⟨ l, v ⟩ z→ I ( l(v) )

where, the R-vector space structure of V
∨
is given by the isomorphism

HomC(V,C)
∼
ÐÐ→ HomR(V,R)

l z→ I ( l )

(l ∶ v ↦ −g(iv) + ig(v)) ←Ð[ g
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One has a canonical homomorphism

V
∨
ÐÐ→ Hom(Γ,S1)

l z→ exp (2πi ⟨ l, ⋅ ⟩)

which is surjective, since ⟨ ⋅, ⋅ ⟩ is non-degenerate, and has for kernel Γ∨. Thus it induces
an isomorphism

T∨ ≅ Pic0(T)

Definition 4.2.2 (Poincaré bundle). The Poincaré bundle is the‡ holomorphic line
bundle P on T ×T∨ satisfying :

(i) The restriction of P to T × {L} is isomorphic to L for every L ∈ T∨.

(ii) The restriction of P to {0} ×T∨ is trivial.

Define a hermitian form Hcan ∈ Her(V ⊕ V
∨
) by

Hcan ∶ V ⊕ V
∨
× V ⊕ V

∨
ÐÐ→ C

((v, l), (v′, l′)) z→ l(v′) + l′(v)

where, clearly, E(Γ⊕Γ∨,Γ⊕Γ∨) ∶= IHcan(Γ⊕Γ∨,Γ⊕Γ∨) ⊆ Z. Construct a semi-character
associated to Hcan in the following way:

χcan ∶ Γ⊕ Γ∨ ÐÐ→ S1

(γ, l0) z→ exp (πiI l0(γ)) .

By Appell-Humbert (theorem 4.1.4), the pair (Hcan, χcan) defines a line bundle P on
T ×T∨ with associated multiplier system (e(γ,l0))(γ,l0)∈Γ⊕Γ∨

, given by:

e(γ,l0)(v, l) = χcan(γ, l0) exp(πHcan [(v, l), (γ, l0)] +
π

2
Hcan [(γ, l0), (γ, l0)])

= exp (πiI l0(γ)) exp(π [l(γ) + l0(v)] +
π

2
[l0(γ) + l0(γ)])

• Let L ∈ Pic0(T). From (4.3), there exists some l ∈ V
∨
such that

L = L(0, αv(γ)) where αv(γ) = exp (2πiE(v, γ)) .

Consider the restriction of P on T×{L}: then, the associated multipliers (e(γ,0))γ∈Γ
are given by

e(γ,0)(v, l) = χcan(γ,0) exp (πl(γ)) = exp (πl(γ)) .

‡This will soon be justified, see also B.2.15
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Again, by remark 4.1.2, one can freely multiply both sides by a coboundary h(v+γ)
h(v) .

Choose h ∶ v z→ exp (πl(v)), this gives

⇔ e(γ,0)(v, l) exp (πl(v + γ))
−1

exp (πl(v)) = expπ (l(γ) − l(v + γ) + l(v))

= exp (2πiI l(γ)) = αv(γ)

which is the multiplier for the line bundle L. Hence, this induces an isomorphism

P∣T×{L} ≅ L

• Similarly, for l ∈ V
∨
, consider the restriction of P on {0} × T∨: the associated

multipliers (e(0,l0))l0∈T∨
are given by

e(0,l0)(0, l) = 1

which is, nothing but the multiplier for the trivial line bundle on P∣{0}×T∨ .

Hence, a Poincaré bundle always exists on T×T∨, and is non-degenerate by construction.
Moreover, the Seesaw principle§ shows that it is uniquely determined up to isomorphisms.
Thus every line bundle L ∈ Pic0(T) is isomorphic to the restriction P∣T×{L} for a unique
L ∈ T∨.
Example 4.2.3 (The Mumford bundle). Let (X,L) be an Abelian variety. Consider the
morphisms:

m ∶ X ×X ÐÐ→ X
(x, y) z→ x + y

and
pi ∶ X ×X ÐÐ→ X

(x, y) z→ {
x if i = 1,
0 if i = 2.

and define the Mumford line bundle to be

M ∶= [m]∗L⊗ p∗1L
−1 ⊗ p∗2L

−1 ≅ (id×φL)
∗P (as line bundles on X ×X) (4.7)

First, observe that, for y = φL(x) where x ∈X:

M∣X×{x} = t
∗
xL⊗L

−1 ∈ Pic0(X)

( = (id×φL)
∗P∣X×{x} = P∣X×{y})

since, by theorem 4.1.6 and for x′ ∈X:

t∗x′(t
∗
xL⊗L

−1) = t∗x′+xL⊗ t
∗
x′(L

−1) ≅ t∗x′L⊗ t
∗
xL⊗L

−1 ⊗ t∗x′L ≅ t∗xL⊗L
−1

⇒ ImφL ∈ Pic0(X)

§See lemma B.2.7 in appendix B.
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And similarly,

M∣{0}×X∨ = L⊗L−1 ≅ OX ≅ P∣{0}×X∨

Explicitly, one hasM=M(HM, χM) where for zi, z′i ∈ V and γ, γ′ ∈ Γ:

HM ((z1, z2), (z
′
1, z

′
2)) =HL (z1 + z

′
1, z2 + z

′
2) −HL(z1, z

′
1) −HL(z1, z

′
1)

χM(γ + γ′) = χL(γ + γ
′)χL(γ)

−1χL(γ
′)−1 = αv (

γ

2
)

Remark 4.2.4 (Universal property of dual Abelian varieties). The Poincaré bundles are
universal objects in the following sense: For an Abelian variety (X,M) and a scheme T
with the line bundleM′ on X × T satisfying (i) and (ii) in definition 4.2.2, there exists
a unique morphism f ∶ T Ð→X∨ such that

(id×f)∗P =M′

See B.2.15 in appendix B.

4.2.5. The case of 1-dimensional complex Abelian varieties: elliptic curves

Let X(C) = E(C) be an elliptic curve, with origin O = {0} and let L = L([0]) be the line
bundle associated to the divisor [0] ∈ Div(E).

Recall that the Weierstrass σ-function:

σ(z,Γ) = z ∏
γ∈Γ∖{0}

(1 −
z

γ
) exp(

z

γ
+
z2

2γ2
)

satisfies the logarithmic derivative of the Weierstrass’s ζ-function in eq. (2.17) (for z ∈
C ∖ Γ)

ζ(z,Γ) =
σ′(z)

σ(z)

Hence, one has that

d
dz (

σ(z+γ)
σ(z) )

σ(z+γ)
σ(z)

=
d

dz
(ln

σ(z + γ)

σ(z)
) = η(γ)

⇒
σ(z + γ)

σ(z)
e−η(γ)z = eδ

where η ∶ Γ → C is the quasi-period η(γ) ∶= ζ(z + γ) − ζ(z) and is independent¶ from z,
and some constant δ. Define

χ[0](γ) ∶=
σ(z + γ)

σ(z)
e−η(γ)(z+

γ
2
) (which does clearly not depend on z)

¶Indeed, one easily checks that for γ ∈ Γ : d
dz

(ζ(z + γ) − ζ(z)) = −℘(z + γ) + ℘(z) = 0
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Let γ ∈ Γ. If γ ∉ 2Γ, then for z = −γ2 :

χ[0](γ) =
σ(γ2 )

σ(−γ2 )
= −1 as σ is odd.

If 0 ≠ γ ∈ 2Γ, then there exists an order n such that γ ∉ 2nΓ and γ ∈ 2kΓ ∀0 ≥ k < n.
Thus, for γ′ = γ

2n :

χ[0](γ) = χ[0](2
nγ′) =

↑
since η is additive

χ[0](γ
′)2n = 1 as γ′ ∉ Γ.

and one has
σ(z + γ) ∶= χ[0](γ)e

−η(γ)(z+ γ
2
)σ(z)

where χ[0] is a semi-character

χ[0](γ) ∶ ΓÐÐ→ {±1} ⊂ S1

γ z→ {
1 if γ ∈ 2Γ,
−1 if γ ∉ 2Γ.

Now, observe that the quasi-period η is clearly Z-linear and thus, entirely determined by
the periods (ω1, ω2). Moreover, by eq. (2.17), one sees that for γ =m1ω1 +m2ω2 ∈ Γ:

η(γ) = ζ(z + γ) − ζ(z) = E1(z +m1ω1 +m2ω2) −E1(z,ω1, ω2) + e2γ

= −
2πi

ω1
m1 + e2γ by (2.19)

=
ω1

Aω1
γ −

2πi

ω1
m1 + e

∗
2γ by (2.27)

=
ω1

A
+ e∗2γ

Hence, define

θ(z) ∶= exp(−
e∗2
2
z2)σ(z).

One easily sees that

θ(z + γ) = χ[0](γ) exp(
zγ

A
+

∣γ∣2

2A
) θ(z)

= χ[0](γ) exp(πH[0](z, γ) +
1

2
H[0](γ, γ)) θ(z)

where
H[0](z1, z2) =

z1z2

πA
∈ Her(V ) and χ[0](γ) = ±1.

Thus, the holomorphic function θ is a reduced theta function associated to the divisor
[0] i.e. the line bundle L(H[0], χ[0]).
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Remark 4.2.6. Recall that for x ∈ E(C)

t−1
x (p = 0) = x ⇒ t∗xOE(p) ⊗O(−p) ≅ OE(x − p)

(as ker(φL∼[p=0]) is finite) ⇒ Pic0(E) = {[OE(x − p)] ∣x ∈ E(C)}

More generally, for a divisor D = ∑
i
nipi ∈ Div(E) one has

Pic0(E) = {[OE(D)] ∣ deg(D) = 0}

Now, let D = [0]. Taking the canonical polarization L = L([0]), one has the identifi-
cation E∨ ≅ E (since the polarization is principal) and

M≅ OE×E (m−1(O) − p−1
1 (O) − p−1

2 (O)) . (4.8)

Hence, the Poincaré bundle on E ×E is given by

PE ≅ OE×E (∆ − p∗1(O) − p∗2(O)) where ∆ = ker(m ∶ E ×E Ð→ E).

Explicitly, one recovers the results found in the previous subsection as PE = PE(HP , χP)
and

HP =m∗H[0] − p
∗
1H[0] − p

∗
2H[0] and χP =m∗χ[0] ⋅ p

∗
1χ

−1
[0] ⋅ p

∗
2χ

−1
[0]

( =Hcan) ( = χcan)

where

HP ((z1, z2), (z
′
1, z

′
2)) =H[0] (z1 + z

′
1, z2 + z

′
2) −

z1z′1
πA

−
z2z′2
πA

=
z1z′2 + z

′
1z2

πA

χP(γ, γ
′) = χ[0](γ + γ

′)χ[0](γ)
−1χ[0](γ

′)−1 = exp(πi
1

πA
I (γγ′))

= exp(
γγ′ − γγ′

2A
)

Thus, PE has the associated reduced theta function ϑ, satisfying the transformation
formula:

ϑ(z + γ, z′ + γ′) = e(γ,γ′)ϑ(z, z
′)

where, the associated multiplier system (e(γ,γ′))(γ,γ′)∈Γ⊕Γ
is given by:

e(γ,γ′)(z, z
′) = χP(γ, γ

′) exp(πHP [(z, z′), (γ, γ′)] +
π

2
HP [(γ, γ′), (γ, γ′)])

= exp(
γγ′

A
) exp(

zγ′ + z′γ

A
)
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4.2.7. The Kronecker theta function Θ

So far, given an elliptic curve E(C) = C/Γ with Poincaré bundle PE , one has an asso-
ciated reduced theta function given by a meromorphic section s ∶ E(C) ×E(C) Ð→ PE ,
i.e. a meromorphic function ϑ ∶ C ×CÐ→ C satisfying the transformation formula:

ϑ(z + γ, z′ + γ′) = exp(
γγ′

A
) exp(

zγ′ + z′γ

A
)ϑ(z, z′) (4.9)

Remark 4.2.8. Let h ∶ C×C→ C be a holomorphic function satisfying the transformation
formula (4.9), and let z0, z

′
0 ∈ C and γ, γ′ ∈ Γ such that γ′ = −γ. One easily sees that

∣h(z0 + γ, z
′
0 + γ

′)∣ = ∣exp(
−γγ − z0γ + z

′
0γ

A
)h(z0, z

′
0)∣

= exp(−
∣γ∣2 +R(z0 − z

′
0)γ

A
) ∣h(z0, z

′
0)∣ ÐÐÐ→

∣γ∣→∞
0

This implies that the holomorphic function f ∶ t z→ h(z0 + t, z
′
0 − t) is bounded, and, by

Liouville’s theorem, that
h(z0, z

′
0) = 0.

Hence, any holomorphic function h(z, z′) on C × C satisfying (4.9) for any γ, γ′ ∈ Γ is
identically null.
This shows that PE has no non-zero holomorphic section. However, a divisor D ∈

Div(E) always define a meromorphic section sD on PE which (in the light of (4.7) and
(4.8)) is given by

sD =m∗s[0] ⊗ p
∗
1s[0] ⊗ p

∗
2s[0] for a section s[0] of L([0])

Definition 4.2.9 (Kronecker theta function). Let E(C) = C/Γ be an elliptic curve,
D ∈ Div(E). We define theKronecker theta function to be the reduced theta function
corresponding to the divisor D, i.e. the meromorphic function

Θ(z, z′) ∶=
θ(z + z′)

θ(z)θ(z′)
where θ(z) = exp(−

e∗2
2
z2)σ(z) (4.10)

At first, one clearly sees that

Θ(z, z′) = exp (−e∗2zz
′)
σ(z + z′)

σ(z)σ(z′)
has residues resz=0(Θ, z) = resz′=0(Θ, z

′) = 1

Recall from (2.38) in chapter 2, that for a positive integer a and complex numbers
z, z′ ∈ C:

θa,t(z, z
′) ∶ = ∑

γ∈Γ

exp (−t∣z + γ∣2) ⟨γ, z′ ⟩(z + γ)a

= ∑
γ∈Γ

exp (−t∣z + γ∣2) exp(
γz′ − z′γ

A
)(z + γ)a
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where t ∈ R>0. Pose

ϑa,t(z, z
′) ∶= exp(

zz′

A
) θa,t(z, z

′)

One easily sees that

θa,t(z + γ, z
′ + γ′) = θa,t(z + γ, z

′) exp(
γγ′ − γ′γ

A
)

= θa,t(z + γ, z
′) by (iii) in §2.3.1

and

exp(
(z + γ)(z′ + γ′)

A
) = exp(

(z + γ)z′ − z′(z + γ)

A
) exp(

(z + γ)γ′ + z′(z + γ)

A
)

= χ(z + γ, z′) exp(
zγ′ + z′γ

A
) exp(

γγ′ + z′z

A
)

Thus, it easily follows that

ϑa,t(z + γ, z
′ + γ′) = exp(

(z + γ)(z′ + γ′)

A
) θa,t(z + γ, z

′ + γ′)

= exp(
γγ′

A
) exp(

zγ′ + z′γ

A
) θa,t(z + γ, z

′)χ(z + γ, z′) exp(
z′z

A
) .

Since θ̂a,t,z′(z) ∶= θa,t(z, z′)χ(z, z′) is Γ-periodic, one gets that

ϑa,t(z + γ, z
′ + γ′) = e(γ,γ′)(z, z

′)θa,t(z, z
′)χ(z, z′) exp(

z′z

A
)

= e(γ,γ′)(z, z
′) exp(

zz′

A
) θa,t(z, z

′)

= e(γ,γ′)(z, z
′)ϑa,t(z, z

′) (4.11)

Hence, the real analytic function ϑa,t defines a smooth section of PE . Recall from
eq. (2.37) that for z ∈ C ∖ Γ and z′ ∈ C, Ka(z, z

′, s) is C∞ and satisfies:

Ka(z, z
′, s) =

1

Γ(s)

∞

∫
0

∑
γ∈Γ

θa,t(z, z
′)ts−1 dt

Define

κa(z, z
′, s) ∶= exp(

zz′

A
)Ka(z, z

′, s) =
1

Γ(s)

∞

∫
0

∑
γ∈Γ

ϑa,t(z, z
′)ts−1 dt (4.12)

For a = s = 1 and by (2.43), one sees that

∂

∂z
κ1(z, z

′,1) = 0
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Hence, κ1(z, z
′,1) is holomorphic in z ∈ C ∖ Γ. Note that

κ1(z, z
′,1) = exp(

zz′

A
)K1(z, z

′,1)

= exp(
zz′

A
)K1(z

′, z,1) exp(
z′z − zz′

A
) (by the functional equation (2.36))

= κ1(z
′, z,1)

⇔
∂

∂z′
κ1(z, z

′,1) =
∂

∂z′
κ1(z

′, z,1) = 0

Thus, κ1(z, z
′,1) is also holomorphic in z′ ∈ C∖Γ. It has possible poles at z ∈ Γ or z′ ∈ Γ

since by (2.41)

K1(z, z
′,1) = IA−1(1, z, z′,1) + ⟨ z′, z ⟩IA−1(1, z′, z,1)

=

∞

∫
A−1

θ1,t(z, z
′)dt + ⟨ z′, z ⟩

∞

∫
A−1

θ1,t(z
′, z)dt

If z or z′ is in Γ, then by (4.11) one can assume that it is equal to 0. One then see that

κ1(z, z
′,1) −

∞

∫
A−1

exp(−t∣z∣2 +
zz′

A
) z dt − ⟨ z′, z ⟩

∞

∫
A−1

exp(−t∣z′∣2 +
zz′

A
) z′ dt

=

∞

∫
0

∑
γ∈Γ
γ≠0

exp (−t∣z + γ∣2) exp(
γz − zγ + zz′

A
)(z + γ)dt

is real analytic, and thus zz′κ1(z, z
′,1) is clearly holomorphic (and nonzero) in a neigh-

bourhood of 0. Moreover, one also has that

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−z
∞

∫
A−1

exp (−t∣z∣2 + zz′

A ) z dt = exp (−
∣z∣2

A + zz′

A ) ÐÐ→
z→0

1

−z′
∞

∫
A−1

exp (−t∣z′∣2 + zz′

A ) z′ dt = exp (−
∣z′∣2

A + zz′

A ) ÐÐÐ→
z′→0

1

and thus,
resz=0(κ1, z) = resz′=0(κ1, z

′) = 1

Summing up, κ1(z, z
′,1) defines a meromorphic section of the Poincaré bundle PE where

E(C) is an elliptic curve. It has simple poles at z = 0 and z′ = 0 with residue equal to
1. These correspond to the divisors O × E and E × O, respectively. Thus, κ1(z, z

′,1)
and Θ(z, z′) BOTH define a meromorphic section of PE with the same simple pole and
identical residues on it. This means that the function κ1(z, z

′,1) − Θ(z, z′) defines a
holomorphic section of PE which, by remark 4.2.8, is identically null. This finally relates
the Kronecker theta function Θ to the the Eisenstein-Kronecker-Lerch series:
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Theorem 4.2.10 (Kronecker). The Kronecker theta function associated to the divisor
D = ∆ − (O ×E) − (E ×O) is given by

Θ(z, z′) =
θ(z + z′)

θ(z)θ(z′)
= exp(

zz′

A
)K1(z, z

′,1)

This will be the key result in order to prove the main theorem of this thesis in the
next section. We end this section by the following remark: recall from §4.1.10 that given
a reduced theta function ϑD corresponding to some meromorphic sections s, one defines
its translation to be

ϑ+wD (v) ∶= ew(v)
−1ϑD(v +w)

We would like to reproduce this method in order to define a translation for the Kronecker
theta function. Consider once again the Mumford bundle

M= [m]∗L⊗ p∗1L
−1 ⊗ p∗2L

−1 = L(HM, χM)

where clearly

χM(v,w) = exp(2πiE (v,
w

2
)) .

Extend χ into a map

χ̃M ∶ V × V Ð→ C×

(v,w) z→ exp(2πiE (v,
w

2
))

and define the map e ∶ V 2 × V 2 Ð→ C× by

e(w,w′)(v, v
′) ∶= χ̃(w,w′) exp(πHM ((v,w), (v′,w′)) +

π

2
HM ((w,w′), (w,w′))) .

This defines the translation of the Kronecker theta function

Θ(w,w′)(z, z
′) ∶= Θ(z, z′)+(w,w

′) = e(w,w′)(v, v
′)−1Θ(z +w, z′ +w′). (4.13)

In the case of an elliptic curve E(C), one has:

Θ(w,w′)(z, z
′) = exp(−

ww′

A
) exp(−

zw′ + z′w

A
)Θ(z +w, z′ +w′). (4.14)

4.3. The generating function of the Eisenstein-Kronecker
numbers

Let a ≥ 1, b > 0 be positive integer and z0, z
′
0 be fixed complex numbers. Recall the series

expansion for the Eisensitein-Kronecker-Lerch series given by (2.35) :

Γ(s)K∗
a (z0, z

′
0, s) = IA−1(a, z0, z

′
0, s) +A

a+1−2sIA−1(a + 1, z′0, z0,1 − s)⟨ z
′
0, z0 ⟩Γ
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where

IA−1(a, z0, z
′
0, s) =

∞

∫
A−1

θa,t(z0, z
′
0)t

s−1 dt

The aim of this section, and the main result of this thesis, is that the translation of
the Kronecker theta function Θz0,z′0

(z, z′) is a generating function for the Eisenstein-
Kronecker numbers e∗a,b(z0, z

′
0):

Theorem 4.3.1 ([BK+10]). For z0, z
′
0 ∈ C, the Laurent expansion of Θ(z0,z′0)

(z, z′) at
(0,0) is given by

Θ(z0,z′0)
(z, z′) = ⟨ z′0, z0 ⟩

δ(z0,Γ)

z
+
δ(z′0,Γ)

z′
+ ∑
a,b∈N
b≠0

(−1)a+b−1
e∗a,b(z0, z

′
0)

a!Aa
zb−1z′a

In particular, Θ(z0,z′0)
(z, z′) is the generating function of the Eisenstein-Kronecker num-

bers e∗a,b(z0, z
′
0).

The proof follows mainly from theorem 4.2.10 and lemma 2.3.7. The main technicality
would be to work around singularities when z, z′ ∈ Γ. Thus, we will prove this result in
two parts:

Proof. (i) Suppose that z, z′ ∈ C ∖ Γ: Recall from (4.12) that

κa+b(z, z
′, b) ∶= exp(

zz′

A
)Ka+b(z, z

′, b).

By lemma 2.3.7, one sees that

∂

∂z
κa+b(z, z

′, b) = −bκa+b+1(z, z
′, b + 1)

∂

∂z′
κa+b(z, z

′, b) = −A−1κa+b+1(z, z
′, b)

Thus, by definition 2.3.8, the Taylor series of the holomorphic function κ1(z+z0, z
′+

z′0,1) around (0,0) is given by

∑
a≥0
b>0

(−1)a+b−1 e
∗
a+b−1(z0, z

′
0)

a!Aa
zb−1z′a.

On the other hand, one has that

Θ(z0,z′0)
(z, z′) = exp

⎛

⎝
−
z0z′0
A

⎞

⎠
exp

⎛

⎝
−
zz′0 + z

′z0

A

⎞

⎠
Θ(z + z0, z

′ + z′0)

= exp(
(z + z0)z′ + (z′ + z′0)z

A
) exp(

z′0z0

A
)κ1(z + z0, z

′ + z′0,1)

= uz,z′(z, z′) exp(
z′0z0

A
)κ1(z + z0, z

′ + z′0,1)
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where uz,z′(z, z′) is a real-analytic function in (z, z′, z, z′), with uz,z′(0,0) = 1. Thus
derivatives ∂

∂z and ∂
∂z′ commute with the evaluation z = z′ = 0 and one gets

∑
a≥0
b>0

1

a!(b − 1)!
(
∂

∂z
)
b−1

(
∂

∂z′
)
a

(uz,z′(z, z′) exp(
z′0z0

A
)κ1(z + z0, z

′ + z′0,1))
z=0,z′=0

z=0,z′=0

zb−1z′a

= ∑
a≥0
b>0

1

a!(b − 1)!
exp(

z′0z0

A
)(

∂

∂z
)
b−1

(
∂

∂z′
)
a

(κ1(z + z0, z
′ + z′0,1))∣z=0,z′=0

zb−1z′a

= ∑
a≥0
b>0

1

a!(b − 1)!
(−1)a+b−1 (b − 1)!

Aa
e∗a,b(z0, z

′
0)z

b−1z′a

= ∑
a≥0
b>0

(−1)a+b−1
e∗a,b(z0, z

′
0)

a!Aa
zb−1z′a.

(ii) Suppose z, z′ ∈ Γ: Here, we mainly have problems in −z0,−z
′
0, respectively, when

z0, z
′
0 ∈ Γ. One way to counter these singularities is to introduce new auxiliary

functions in order to end up with the case (i). We proceed carefully as follow: Let
Γ1,Γ2 be two subsets of Γ, and define for i = 1,2

θa,t(z0, z
′
0; Γi) ∶= ∑

γ∈Γi

exp (−t∣z0 + γ∣
2) (z0 + γ)

a⟨γ, z′0 ⟩Γ

ĨA−1(a, z0, z
′
0, b − 1; Γi) ∶= exp(−

z0z
′
0

A(Γ)
)

∞

∫
A−1(Γ)

θa,t(z0, z
′
0; Γi)t

b−2 dt.

By proposition 2.3.3, the function ĨA−1(a, z0, z
′
0, b− 1; Γi) is holomorphic in (z0, z

′
0)

whenever −z′0 ∉ Γi and one has

∂

∂z
ĨA−1(a, z0, z

′
0, b − 1; Γi) = exp(−

z0z
′
0

A(Γ)
)

∞

∫
A−1(Γ)

∂

∂z
θa,t(z0, z

′
0; Γi)t

b−2 dt

= − exp(−
z0z

′
0

A(Γ)
)

∞

∫
A−1(Γ)

θa+1,t(z0, z
′
0; Γi)t

b−1 dt

= −ĨA−1(a + 1, z0, z
′
0, b; Γi) (4.15)

Similarly,

∂

∂z′
ĨA−1(a, z0, z

′
0, b − 1; Γi) = exp(−

z0z
′
0

A(Γ)
)

∞

∫
A−1(Γ)

∂

∂z′
θa,t(z0, z

′
0; Γi)t

b−2 dt

= −A−1(Γ) exp(−
z0z

′
0

A(Γ)
)

∞

∫
A−1(Γ)

θa+1,t(z0, z
′
0; Γi)t

b−2 dt

= −A−1(Γ)ĨA−1(a + 1, z0, z
′
0, b − 1; Γi). (4.16)
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Analogously to (2.35), one defines an auxiliary function K̃a,b by

K̃a,b(z0, z
′
0; Γ1,Γ2) ∶=

1

(b − 1)!
(ĨA−1(a + b, z0, z

′
0, b; Γ1) +A

a−b+1(Γ)ĨA−1(a + b, z′0, z0, a + 1; Γ2)) .

It is analytic in (z0, z
′
0) whenever (−z0,−z

′
0) ∉ Γ1 × Γ2 and one easily sees from

(4.15) and (4.16) that

∂
∂z K̃a,b(z0, z

′
0; Γ1,Γ2) = −bK̃a,b+1(z0, z

′
0; Γ1,Γ2)

∂
∂z′ K̃a,b(z0, z

′
0; Γ1,Γ2) = −A−1(Γ)K̃a+1,b(z0, z

′
0; Γ1,Γ2)

Now suppose that z0, z
′
0 ∈ Γ, and let Γ1 ∶= Γ∖ {−z0} and Γ2 = Γ∖ {−z′0}. By (2.40),

one has
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

θa,t(z0, z
′
0; Γ1) = θa,t(z0, z

′
0,Γ)

θa,t(z
′
0, z0; Γ2) = θa,t(z

′
0, z0,Γ)

and one sees that

K̃a,b(z0, z
′
0; Γ1,Γ2) =

1

(b − 1)!
(ĨA−1(a + b, z0, z

′
0, b; Γ1) +A

a−b+1(Γ)ĨA−1(a + b, z′0, z0, a + 1; Γ2))

= exp(−
z0z

′
0

A
)

1

(b − 1)!
(IA−1(a + b, z0, z

′
0, b) +A

a−b+1IA−1(a + b, z′0, z0, a + 1))

= exp(−
z0z

′
0

A
)K∗

a+b(z0, z
′
0, b) by (2.35)

Hence,

K̃a,b(z0, z
′
0; Γ1,Γ2) = exp(−

z0z
′
0

A
) e∗a,b(z0, z

′
0) (4.17)

On the other hand,

Θ(z0,z′0)
(z, z′) = exp

⎛

⎝
−
z0z′0
A

⎞

⎠
exp

⎛

⎝
−
zz′0 + z

′z0

A

⎞

⎠
Θ(z + z0, z

′ + z′0)

= exp(
(z + z0)z′ + (z′ + z′0)z

′

A
) exp

⎛

⎝

z0z′0
A

⎞

⎠
K̃0,1(z + z0, z

′ + z′0,Γ,Γ)

= uz,z′(z, z′) exp
⎛

⎝

z0z′0
A

⎞

⎠
K̃0,1(z + z0, z

′ + z′0,Γ,Γ)

Now, K̃0,1(z, z
′,Γ,Γ) has singularities in (z0, z

′
0) when γ = −z0,−z

′
0. This means

that the principal part of its Laurent series is given by

1

z − z0
ĨA−1(1, z, z′,1;{−z0}) +

1

z′ − z′0
ĨA−1(1, z′, z,1;{−z′0})
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where

ĨA−1(1, z + z0, z
′ + z′0,1;{−z0}) = exp(−

(z + z0)(z
′ + z′0)

A(Γ)
)

∞

∫
A−1(Γ)

θ1,t(z + z0, z
′ + z′0;{−z0})dt

= exp(−
(z + z0)(z

′ + z′0)

A(Γ)
) z⟨ z′, z0 ⟩Γ

∞

∫
A−1(Γ)

exp (−t∣z∣2) dt

=
1

z
exp(−

(z + z0)(z
′ + z′0)

A(Γ)
) exp(−

zz

A(Γ)
) ⟨ z′, z0 ⟩Γ

and similarly,

ĨA−1(1, z′ + z′0, z + z0,1;{−z′0}) =
1

z′
exp(−

(z + z0)(z
′ + z′0)

A(Γ)
) exp(−

z′z′

A(Γ)
) ⟨ z, z0 ⟩Γ.

Now, pose
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

vz,z′(z, z′) ∶= exp(
z0z′0
A(Γ)

) ĨA−1(1, z + z0, z + z0,1;{−z0})

v′z,z′(z, z
′) ∶= exp (

z′0z0
A(Γ)

) ĨA−1(1, z′ + z′0, z + z0,1;{−z′0})

These are real analytic functions in (z, z′, z, z′), with vz,z′(0,0) = v′z,z′(0,0) = 1.
Observe that whenever z0, z

′
0 ∈ Γ, one has

ĨA−1(1, z, z′,1; Γ) = ĨA−1(1, z, z′,1;{−z0}) + ĨA−1(1, z, z′,1; Γ1)

and

ĨA−1(1, z′, z,1; Γ) = ĨA−1(1, z′, z,1;{−z′0}) + ĨA−1(1, z′, z,1; Γ2).

and this finally gives:

Θ(z0,z′0)
(z, z′) − uz,z′(z, z′)vz,z′(z, z′)⟨ z

′
0, z0 ⟩

δ(z0,Γ)

z
− uz,z′(z, z′)vz,z′(z, z′)

δ(z′0,Γ)

z′

= uz,z′(z, z′) exp
⎛

⎝

z0z′0
A

⎞

⎠
K̃0,1(z + z0, z

′ + z′0,Γ1,Γ2)

By the same reasoning as in (i), one finally gets

(
∂

∂z
)
b−1

(
∂

∂z′
)
a

(Θ(z0,z′0)
(z, z′) − ⟨ z′0, z0 ⟩

δ(z0,Γ)

z
−
δ(z′0,Γ)

z′
)

= (−1)a+b−1 (b − 1)!

Aa
exp(

z0z
′
0

A
) K̃a,b(z0, z

′
0; Γ1,Γ2)z

b−1z′a

= (−1)a+b−1 (b − 1)!

Aa
exp(

z0z
′
0

A
)
e∗a,b(z0, z

′
0)

a!Aa
zb−1z′a by (4.17)

which finishes the proof.
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5
Algebraicity of the Eisenstein-Kronecker

numbers and Damerell’s theorem

The algebraicity of special values of L-functions is a very useful arithmetic property. Two
approaches are being explored here: the first approach, uses mainly results from chapter 2
to prove Damerell’s theorem on the algebraicity of the special values of the Hecke L-
function, where the second is, seemingly more interesting and powerful as it allows the
study of theta functions (chapter 4) on general CM abelian varieties algebraically, through
the heavy machinery of algebraic theta functions [DM91].

5.1. Algebraicity results using Eisenstein-Kronecker series

Damerell’s theorem ([Dam70]) is related to the algebraicity of some special values of
Hecke L-functions, on imaginary quadratic fields. The relevance and important of such a
result arise from its link to critical values of L-functions of elliptic curves, under complex
multiplication ( theorem B.3.10 - theorem 3.2.12 )

Theorem 5.1.1 (Damerell). Let K be an imaginary quadratic number field, OK its ring
of integers. Then for all integers a, b ≥ 0 such that b − a ≥ 3

B∗a,b(OK) ∶= (−1)b−a
(b − 1)!

2AaΩb+a
e∗a,b(OK) are algebraic over Q.

Where Ω ∶= 2π∣q∣
1
12 ∏
n≥1

(a − qn)2 with q ∶= e2πiτ and A is the area of the fundamental

domain of OK divided by π. In particular, we have

Ba,b(OK) ∈ Q (e4(ΩOK), e6(ΩOK))

Proof. Let us first fix a complex embedding i∞ ∶K ↪Ð→ C such that i∞(OK) is a lattice
in C along with a basis {1, τ} of OK with

I(τ) > 0 and A =
τ − τ

2πi
.

Let Γ = ω1Z⊕ ω2Z be a lattice in C such that E(C) ≅ C/Γ has CM by OK . Recall from
remark 2.2.11 and from (2.33) that

e∗a,b(OK) =
Aa

2a(b − 1) . . . (b − a)
Qa,b (e

∗
2(OK), e∗4(OK), . . . , e∗a+b(OK))
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with

Qa,b ∈ Q[e∗2(OK), e∗4(OK), . . . , e∗a+b(OK)] and e∗a,b = ea,b whenever b − a ≥ 3.

It thus, suffices to prove that the e∗2k(OK) are algebraic over Q for all values of n = 2k,
2 ≤ n ≤ b + a. Recall from (2.16) the power series expansion for the Eisenstein series En
for all n ≥ 2:

En(z; Γ) −
1

zn
= (−1)n

∞

∑
k=1

(
2k − 1

n − 1
)e2k(Γ)z2k−n

where, e2k(Γ) is the value of E2k(z, (Γ)) − 1
z2k near 0, given by

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

en(Γ) = ∑e
m1,m2≠0

1
(m1ω1+m2ω2)2k if n = 2k

en(Γ) = 0 else.

In particular, one has that

E2(z,ω1, ω2) =
1

z2
+

∞

∑
k=1

e2k(Γ)z2k−2

E4(z; Γ) =
1

z4
+

∞

∑
k=1

(2k − 1)(2k − 2)(2k − 3)

6
e2k(Γ)z2k−4

= (E2(z,ω1, ω2) − e2(Γ))2 − 5e4(Γ) by (2.25)

This gives a recursive formula

e2k(Γ) =
k−2

∑
i=2

3
(2i − 1)(2k − 2i − 1)

(k − 3)(4k2 − 1)
e2i(Γ)e2(k−i)(Γ) ∈ Q[e4(Γ), e6(Γ)] (5.1)

(i) For simplicity, we first suppose that 4 ≤ n = 2k ≤ b + a, so we have that e∗a,b(Γ) =

ea,b(Γ).

• Claim1: For any linear transformation Γ′ of the lattice Γ such that

Γ′ = ω′1Z⊕ ω
′
2Z where

⎧⎪⎪
⎨
⎪⎪⎩

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2

for a, b, c, d ∈ Z

One has:

e′2k ∶= e2k(Γ
′) ∈ Q(e4(Γ), e6(Γ)) for all n ≥ 4. (5.2)

Proof of Claim1. Let D ∶= ∣ad−bc∣ such that [Γ′ ∶ Γ] =D = [DΓ ∶ Γ′] and let R
(resp. R′) be a set of representatives for Γ/DΓ (resp. Γ′/DΓ) containing 0.
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Recall from (2.20) that, for any n ≥ 2∗:

E′
n (
z + r

D
; Γ′) = ∑

r∈R

En (
z + r

D
; Γ) =DnEn(z; Γ)

Hence, subtracting (D
z
)
n
in both sides and taking z = 0, one gets

∑
r∈R
r≠0

En (
r

D
; Γ) = (Dn − 1)en(Γ)

Recall also that, for n = 2k:

e′2k = ∑
r′∈R′

∑
γ∈Γ

1

(r′ +Dγ)2k
=
e2k,Γ

D2k
+

1

D2k ∑
r′∈R′

r′≠0

1

( r
′

D + γ)
2k

=
e2k,Γ

D2k
+

1

D2k ∑
r′∈R′

r′≠0

E2k (
r′

D
; Γ)

Thus, any power of E′
2k (

z+r
D ; Γ′) is a polynomial in En and ℘. By Newton’s

algorithm : power sums↔ elementary symmetric polynomials, the same holds
for the elementary symmetric polynomials in E2k and thus, by Galois theory
(or more precisely, by the fundamental theorem of symmetric polynomials)
one gets

En (
z + r

D
; Γ) and ℘(

z + r

D
; Γ) are algebraic over Q(℘(

z + r

D
; Γ) ,En (

z + r

D
; Γ)) .

Now, as

∑
r∈R
r≠0

℘(
r

D
; Γ) = ∑

r∈R
r′≠0

E2 (
r

D
; Γ) − ∑

r∈R
r′≠0

e2(Γ)

= (D2 − 1)e2(Γ) − (D2 − 1)e2(Γ) = 0

One sees that for all r′ ∈ R′ ⊆ R, E2k (
r′

D ; Γ) is algebraic over Q(e2k(Γ)). The
claim follow from the recursive formula (5.1).

Now, let α ∈ C× and suppose that the linear transformation is given by complex
multiplication, i.e. Γ′ = ω′1Z⊕ ω′2Z = αΓ ⊆ Γ, where:

ω′1 = αω1, ω′2 = αω2 and D = ∣α∣2 > 0.

∗Note that for n = 2 and by remark 2.2.4, the following also holds:

∑
r∈R

℘(z + r
D

) =D2℘(z)
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(note here that, for αΓ to be a sub-lattice of Γ, α has to be in OK or in Z.)
Observe from §3.3.1 that, a lattice Γ′ has CM by OK if and only if

e4(Γ
′) = β−4e4(Γ) and e6(Γ

′) = β−4e6(Γ) for some β ∈ OK .

Pose δ(Γ) ∶= e4(Γ)3e6(Γ)−2, then

Γ′ = αΓ ⇔ δ(Γ′) = δ(Γ)

• Claim2: If Γ admits CM by OK , then δ(Γ) is algebraic over Q.

Proof of Claim2. For integers a, b, c, d ∈ Z, define the function

T4(u, v) ∶= e4(u
′Z⊕ v′Z) − α−4e4(uZ⊕ vZ) where {

u′ = au + cv.
v′ = bu + dv.

Then T4 cannot be identically 0, as α ∉ Z. By Claim1, T4(u, v) is then alge-
braic over Q(e4(uZ⊕vZ), e6(uZ⊕vZ)) and there exists a non-zero polynomial
P ∈ Q[T4, e4(uZ⊕ vZ), e6(uZ⊕ vZ)] such that

P (T4(u, v), e4(uZ⊕ vZ), e6(uZ⊕ vZ)) = 0

Let P = Tm4 Q for somem ≥ 0, where Q is a rational polynomial in the variables
T4(u, v), e4(uZ⊕ vZ), e6(uZ⊕ vZ) that is NOT a multiple of T4(u, v). By
continuity, and since T4 ≢ 0 one still has that

Q(T4(u, v), e4(uZ⊕ vZ), e6(uZ⊕ vZ)) = 0

However, since in our case T4(ω1, ω2) = 0, we must have

Q(0, e4(Γ), e6(Γ)) = 0

Thus, by the homogeneity of e4(Γ) and e6(Γ), one gets

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

δ(Γ′) is algebraic over Q if e6(Γ) ≠ 0

δ(Γ′) = ∞ else.

Now take Γ = OK and α = Ω ∶= 2π∣q∣
1
12 ∏
n≥1

(a − qn)2 with q ∶= e2πiτ (observe

here that τ ∈ Q(Ω)). Suppose at first, that e6(OK) ≠ 0, then from (3.10) :

δ(OK) = 603e4(OK)3 − 331402e6(OK)2

= e4(OK)3 (603 −
331402

e4(OK)3e6(OK)−2
)

= e4(OK)3 (603 −
331402

δ(OK)
)

= e6(OK)2 (603δ(OK) − 331402)
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Hence

(e′4)
3 ∶= e4(ΩOK)3 = ±

e4(OK)3

∆(OK)
= ±(603 −

331402

δ(OK)
)

−1

(e′6)
2 ∶= e6(ΩOK)2 = ±

e6(OK)2

∆(OK)
= ±(603(δ(OK)) − 331402)

−1
.

As δ(OK) is algebraic over Q from Claim2, so are e′4 and e′6.
Now if e6(OK) = 0: This is known as the “ lemniscatic case” and occurs when
Ω = i (and thus K = Q(i)), then the same holds since

e4(ΩOK)3 = Ω−12e4(OK)3 = ±60−3

e6(ΩOK) = 0

Hence, by Claim1, e4(OK), e6(OK), . . . , ea+b(OK) are all algebraic over Q.

(ii) We now treat similarly the case n = 2, where e∗2(OK) = e2 −
1
A .

Let α ∈ OK ∖ Z and a ⊲ OK with a = (α). Let R be a set of representatives for
OK/a containing 0. Recall that by definition, from §2.2.9

∑
r∈R

E∗
2 (z + r;OK) = α−2

∑
r∈R

E∗
2 (

z + r

α
;OK) = E∗

2 (z,OK)

⇒ α−2
∑
r∈R

E∗
2 (

z + r

α
;OK) −

1

z2
= α−2 (∑

r∈R

E∗
2 (

z + r

α
;OK) −

α2

z2
)

= E∗
2 (z,OK) −

1

z2

Now, taking z = 0:

∑
r∈R
r≠0

E∗
2 (

r

α
;OK) = α2e∗2(OK)

⇒ ∑
r∈R
r≠0

(E∗
2 (

z + r

α
;OK) − e∗2(OK)) = (α2 − ∣α∣2)e∗2(OK)

⇒ ∑
r∈R
r≠0

℘(
r

α
;OK) = α(α − α)e∗2(OK)

Hence, by the same argument, one shows that ℘( αr
∣α∣2

;OK) is algebraic over
Q(e4(OK), e6(OK)) and thus, so is e∗2(OK). This finishes the proof.

Remark 5.1.2. Using the analytic continuation of the Eisenstein-Kronecker-Lerch series
(as done in the last part of §2.3.6 where, e∗a,b =K

∗
a+b(0,0, b)), Damerell’s theorem is valid

for all values b > a ≥ 0.
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5.2. Using the theory of algebraic theta functions

The idea is the following: LetX be a g-dimensional abelian variety over some ground field
F with X(C) ≅ T = V /C (as explained in B.1). Then for a given sections s, one can use
the translation operator of reduced theta functions to reduce the study of properties of
ϑs at a torsion point p ∈ Γ⊗Q to the study of ϑ at the origin. Mumford’s theory provides
a way to construct an algebraic translation operator that preserves the reducedness and
algebraicity.

5.2.1. Review of Mumford’s theory of algebraic theta functions

Let A(F) be a g-dimensional abelian variety over a ground field F. As seen in the
previous chapter, classical theta functions arise by trivialising a complex line bundle on
the universal covering of an abelian variety. Unfortunately, in the "Algebraic Geometry"
world, and over an arbitrary ground field F, there is no universal cover in the category
of varieties; meaning that the universal covering is not algebraic. However, there are
many finite algebraic coverings in-between: One noticeable example is given by the N -
multiplication map [N]. These finite coverings form a projective system:

Definition 5.2.2 (Tate module). Let l ≠ charF be a prime number, and A(F) be an
abelian variety. We define the l-adic Tate module associated to A(F) to be the
Zl-module

Tl(A) ∶= lim
←Ð
n→∞

A[ln]

where, for all x ∈ Tl(A), x = (ai)i≥0 for some torsion points ai of A(F) such that:
for all i ≥ 0

ai ∈ A[li] and l ⋅ ai+1 = ai.

Note that one has a sequence of groups

. . .
[l]
ÐÐ→ A[ln+1]

[l]
ÐÐ→ A[ln]

[l]
ÐÐ→ . . .

[l]
ÐÐ→ A[l]

[l]
ÐÐ→ 0.

Remark 5.2.3. If F ⊂ C, the complex analytic structure on A(C) ≅ Cg/Γ provides a Z-
module structure on Γ along with a complex structure Γ⊗ZR(≅ T0A). The multiplication
map [N] induces a canonical isomorphism

A[N] ≅ Γ⊗Z (Z/NZ)

and, using (B.2), one gets

. . .
red mod ln+1

ÐÐÐÐÐÐÐ→ Γ⊗Z (Z/
ln+1Z)

red mod ln
ÐÐÐÐÐÐ→ Γ⊗Z (Z/

ln+1Z)
red mod ln−1

ÐÐÐÐÐÐÐ→ . . .ÐÐ→ 0

Hence, taking the inverse limit, one has a (non-canonical) isomorphism

Tl(A) ≅ Γ⊗Z Z2g
l
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Definition 5.2.4 (Adèlic Tate module). Let l ≠ charF be a prime number, and A(F) be
an abelian variety. Adèlically, one defines the Tate module associated to A(F) to be the
inverse limit of the system of N -torsion points along the transition maps, given by

T̂ (A) ∶= ∏
l≠charF

Tl(A) = {xl ∈ ∏
l≠charF

Tl(A) such that all but finitely xl ∈ Tl(A)}

Hence, the adèlic Tate module may be regarded as an algebraic version of the complex
universal cover of A(F). Consider a point a = (ai)i ∈ T̂ (A) and let n = 2kN , where N is
a non zero integer such that N ⋅ a1 = 0, k ∈ N>0.

Let L be a symmetric line bundle on A(F) i.e. there exists an isomorphism

ρ−1 ∶ [−1]∗L
∼
ÐÐ→ L

In order to compare sections of L at the torsion point a in A(F) and sections of L at
the origin, one needs to construct a -somehow- canonical isomorphism between L and
t∗aL. The difficulty here, is that this translation operator has to be compatible with the
system of points in T̃ (A), as it is not translating a point of A but of its algebraic cover.

Mumford proceeds as follow: Let b = (bi)i ∈ T̂ (A) such that a = 2b (so bi = a2i) and
pose Lbn ∶= t

∗
bn
([n]∗L) ⊗ ([n]∗L)−1.

First, observe that

Lbn = t
∗
bn([n]

∗L) ⊗ ([n]∗L)−1

= [n]∗ (t∗b1L⊗L
−1) by pulling back [n]∗

≅ t∗2kNb1L⊗L
−1 by theorem B.2.6

≅ OA.

Fix such an isomorphism and call it

ρn ∶ Lbn
∼
ÐÐ→ OA.

One sees that

[−1]∗Lbn = t
∗
−bn ([−n]∗L) ⊗ [−n]∗L−1

ρ−1⊗ρ
⊗−1
−1

ÐÐÐÐÐ→
∼

t∗−bn([n]
∗L) ⊗ ([n]∗L)−1 (5.3)

And

[n]∗(t∗a1
L) ⊗ ([n]∗L)−1 = t∗an([n]

∗L) ⊗ ([n]∗L)−1

= t∗bn ( t∗bn ([n]∗L) ) ⊗ t∗bn (t∗−bn([n]
∗L)−1)

= t∗bn ( t∗bn ([n]∗L) ⊗ t∗−bn([n]
∗L)−1 )

= t∗bn ( t∗bn ([n]∗L) ⊗ ([n]∗L)−1 ⊗ ([n]∗L) ⊗ t∗−bn([n]
∗L)−1 )

(from (5.3)) ≅ t∗bn (Lbn ⊗ [−1]∗L−1
bn )

ρn⊗ρ⊗−1
n

ÐÐÐÐÐ→
∼

t∗bnOA ≅ OA (5.4)
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Hence, one has a canonical isomorphism

[n]∗tMa ∶ [n]∗(t∗a1
L)

∼
ÐÐ→ [n]∗L

Since, say for k = 1: 4N2 ⋅ b2N = N ⋅ 4N ⋅ a4N = N ⋅ a1 = 0 (as a1 ∈ A[N]), b2N is defined
over F(A[4N2]) and thus, so is [n]∗tMa1

.

Remark 5.2.5. Note that the isomorphisms in (5.3) and (5.4) DO NOT depend on the
choice of ρ−1 resp. ρn. Indeed, since the automorphisms of a line bundle are multiplica-
tions by a scalar, it does not matter which scalar one takes as it will always cancel with
its inverse in ρ−1 ⊗ ρ

⊗−1
−1 (resp. ρn ⊗ ρ⊗−1

n ).

Geometrically, the trivialisation (5.4) above produces a rational section

OA
∼
ÐÐ→ [n]∗(t∗a1

L) ⊗ ([n]∗L)−1

1z→ fMn

If one considers a Cartier divisor D = (Ui, fi)i, with its corresponding invertible sheaf
L = OA(D), then this geometric isomorphism is given on Vi = n−1(Ui) by the gluing data:

Spec SymOVi
(n∗t∗a1

OA(−D)) Spec SymOVi
(n∗OA(−D))

([n]∗fi) ⋅ f
M

n [n]∗fi

[n]∗fi
[n]∗t∗a1

fi
⋅ fMn ⋅ Yi Xi

SpecOVi[Yi] SpecOVi[Xi]

In other words, one has the following:

Proposition 5.2.6. Let A(F) be an abelian variety over F, a = (ai)i ∈ T̂ (A) and n =

2kN , where N is a non-zero integer such that N ⋅ a1 = 0, k ∈ N>0. There exist canonical
rational functions (fMn )n defined over F(A[4N2]) such that

DM ∶= div(fMn ) = [n]∗t∗a1
(D) − [n]∗(D) where D = (Ui, fi)i,

and the isomorphism [n]∗tMa ∶ [n]∗(t∗a1
L)

∼
ÐÐ→ [n]∗L is geometrically given by the data:

A1
n−1(Ui)

ÐÐ→ A1
n−1(Ui)

hi z→ (fMn ) ⋅ (
[n]∗fi

[n]∗t∗a1
fi

) ⋅ gi

The next logical thing to do, is to trivialize a line bundle on T̂ (A), and regard the
sections of this line bundle as the algebraic theta functions. This means that one would
need to fix a projective system of trivialization:
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Definition 5.2.7. Let d ∈ N, n = dk with k ∈ N>0 and let (An)n be a projective system in
the category of schemes over F such that the following diagram commutes for allm,n ∈ N:

Xmn Xn

A A

πmn πn

[m]

and where πi are the natural projections.

A system of trivialization of a line bundle L, is a pair (Xn, ϕn) where (Xn)n is a projective
system as above, and

ϕn ∶ π
∗
n[n]

∗L ≅ OAn

is an isomorphism of invertible sheaves, compatibles with the natural projections:

OXn ≅ π
∗
n[n]

∗L . . . [n]∗L L

Xn . . . A A
πn [n]

Example 5.2.8. Consider a point a = (ai)i ∈ T̂ (A) with N ⋅ a1 = 0 as before. One
can construct a system of trivialisations from a as follow: Since an ∈ A(F), one has a
morphism πnN ∶ Spec(F) → A. Fixing an isomorphism [0]∗L ≅ OA induces a trivialisation
[n]∗L ×A A[n] ≅ OA[n] as the following diagram shows:

[0]∗L ×F A[n] [0]∗L

[n]∗L ×A A[n] [n]∗L

A[n] Spec(F) =XNn XN

A[n] A A

πnN
πN

[n]

Hence, one constructs a system of trivialization (Xn, ϕa,n)n∈NN with ϕa,n ∶ π∗n[n]∗L ≅ OXn

for all n ∈ NN.
Now, given a line bundle L(D) over T̂ (A), and given a system of trivialisations

(Xn, ϕa,n)n∈dN, one can obtain a system of trivialisations of t∗a1
L by using the trans-

lation operator tMa as follow: let d′ = lcm(d,2N), then the isomorphism

ϕMa,n ∶ π
∗
n[n]

∗t∗a1
L

π∗n[n]
∗tMa

ÐÐÐÐÐ→
∼

π∗n[n]
∗L

ϕa,n
ÐÐ→

∼
OXn

is compatible with the natural projections and provides a system of trivialization (Xn, ϕ
M

a,n)n∈d′N
of L over T̂ (A).
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Given a rational section s = sD of such a line bundle (corresponding to the Cartier
divisor D = (Ui, fi)i), define the rational morphisms

[n]∗ϑs ∶Xn
π∗n[n]

∗sD
ÐÐÐÐÐ→ π∗n[n]

∗L
ϕa,n
ÐÐ→

∼
OXn (5.5)

[n]∗
M

ϑ+as ∶Xn

π∗n[n]
∗t∗a1

s
ÐÐÐÐÐÐ→ π∗n[n]

∗t∗a1
L

ϕMa,n
ÐÐ→

∼
OXn (5.6)

5.2.9. The “Majin” Kronecker theta function
M

Θ

Let A(F) be a g-dimensional abelian variety over F, and suppose that F is a sub-field of
C. Given an algebraic divisor D, the goal now would be to relate Mumford’s algebraic
construction of theta functions to ϑD associated to a meromorphic section of a line
bundle of the form L(H,χ), satisfying the transformation formula (4.4). Recall that
from §4.1.10, any meromorphic section sD of L(H,χ) induces a reduced theta function
corresponding to a section t∗wsD on L(H,χ⋅αv). This would determine ϑ+wD corresponding
to the translated section t∗wsD up to a complex scalar. Using proposition 5.2.6, one can
construct a more convenient translation operator: Consider the function

eM ∶ V × V Ð→ C×

(v,w) z→ eMw (v) ∶= exp(πH(v,w) +
π

2
H(w,w))

and define the algebraic analogous of the translation (4.6) to be

M

ϑ+wD (v) ∶= (eMw )−1(v)ϑD(v +w)

One easily checks (as in §4.1.10) that
M

ϑ+wD is a reduced theta function for L(H,χ ⋅ αv).
Moreover, unlike the previous translation ϑ+wD , this algebraic translation does not depend
on χ̃.

Fix a complex polarization π ∶ A(C) ≅ T = V /C and consider a point v ∈ Γ ⊗ Q cor-
responding to a torsion point of A(C). As seen in appendix B, one has a map

ι ∶ Γ⊗Q ↪Ð→ A(C)tors

which extends to a map

ι̃ ∶ Γ⊗QÐÐ→ T̂ (A)

v z→ a = (an)n where an = ι(
v

n
)

Let ϑD be a reduced theta function associated to a meromorphic section of a line bun-
dle L(H,χ) with divisor D. Fix w ∈ Γ ⊗ Q with a = (an)n = ι̃(w), and w′ = w

2 where

84 Universität Regensburg, Department of Mathematics, 2020



The generating function of Eisenstein-Kronecker numbers

b = (bn)n = ι̃(w
′) and n ∈ N such that nw ∈ 2Γ.

Recall that, from remark 5.2.5, the function fMn is independent of the choice of ρ−1

and ρn. Thus, one can choose

ρ−1 ∶ v z→
ϑD(−v)

ϑD(v)
and ρn ∶ v z→ exp (−πH(nv,w′)) ⋅

ϑD(nv +w′)

ϑD(nv)

These functions are meromorphic, Γ-periodic (note that since H is a hermitian form, the
exponential part is holomorphic in v, and the transformation formula (4.4) shows that
it is Γ-periodic as long as nw′ ∈ Γ) and have divisors [−1]∗D −D and t∗bn[n]

∗D − [n]∗D,
respectively. Choose an isomorphisms

[−1]∗L
ρ−1
ÐÐ→
∼
L and Lbn

ρn
ÐÐ→
∼

OA

to be defined, respectively, by ρ−1(v) and ρn(v). By proposition 5.2.6, one has

fMn (v) = t∗bn (
ρn(v) ⋅ t

∗
−bn

ρ−1(nv)

ρn(−v) ⋅ ρ−1(nv)
)

= exp [−2πH(nv,w′) − πH(w′,w′)]
ρn(v +

w′

n ) ⋅ ρ−1(nv)

ρn(−v −
w′

n ) ⋅ ρ−1(nv +w′)

= exp [−πH(nv,w) −
π

2
H(w,w)]

ϑD(−nv −w′)

ϑD(nv +w′)
⋅
ρ−1(nv)

ϑD(−nv)
⋅
ϑD(nv +w)

ρ−1(nv +w′)

= eMw (nv)−1 ⋅ ρ−1(nv +w
′) ⋅

1

ϑD(nv)
⋅
ϑD(nv +w)

ρ−1(nv +w′)

= eMw (nv)−1ϑD(nv +w)

ϑD(nv)
=

[n]∗
M

ϑ+wD (v)

[n]∗ϑD(v)
. (5.7)

Now, define a system of trivialisations of L(H,χ): Let (An, ϕn)n∈N be a system of triv-
ialisations in the category of complex varieties where An = V and ϕn = [n]∗ϕϑ,D where

the geometric isomorphism π∗L
ϕϑ,D
ÐÐÐ→

∼
π∗L(H,χ) is given by the gluing data:

A1
Ui ÐÐ→ A1

π−1(Ui)

g z→ ϑD(v) ⋅ (
1

fi
) ⋅ gi

Then, the rational morphism in (5.5) corresponding to the section [n]∗sD satisfy

V π∗n[n]∗L

OV

[n]∗ϕϑ,D

π∗n[n]
∗sD

ϕn ⇒ [n]∗ϑs(v) = [n]∗ϑD(v)
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similarly, the rational translation morphism (5.6) corresponding to the section [n]∗t∗a1
sD

satisfy

V π∗n[n]∗t∗a1
L

OV

M

ϑ+wD (v)

π∗n[n]
∗t∗a1

s

[n]∗ϕMa,n

⇒ [n]∗
M

ϑ+ws (v) = [n]∗ϑs(v) ⋅ π
∗
nf

M

n (v)

by (5.7) = [n]∗ϑD(v) ⋅ [n]∗
M

ϑ+wD (v) ⋅ [n]∗ϑD(v)−1

= [n]∗
M

ϑ+wD (v)

Hence, given a complex analytic system of trivialisations
(An = V,ϕn = [n]∗ϕϑ,D)n∈N of L, with π∗L

ϕϑ,D
ÐÐÐ→

∼
π∗L(H,χ), one has a system of

trivialisations (An = V,ϕMa,n = [n]∗ϕMϑ+wD
)n∈2NN of t∗wL coming from a = (an)n = ι̃(w) ∈

T̂ (A) with π∗t∗wL
ϕ
ÐÐ→
∼ ϑ+wD

π∗L(H,χ ⋅ αw).

This induces an isomorphism

[n]∗t∗wL ≅ [n]∗L(H,χ ⋅ αw)

as
M

ϑ+wD (v) is the reduced theta function corresponding to L(H,χ ⋅ αw).

Now fix once and for all an isomorphism t∗wL ≅ L(H,χ ⋅ αw) so that the section t∗ws
has (under this isomorphism) the corresponding reduced theta function

M

ϑ+ws (v) = fMn (
v

n
)ϑs(v).

Note that
M

ϑ+ws differs from ϑs only by an 2n2-root of unity, as the (fMn )2NN are rational
functions defined over F(A[2N2]).

Finally, in the same way as in (4.13), we define the algebraic translation of the Kro-
necker theta function by

M

Θ(w,w′)(z, z
′) ∶=

M

Θ(z, z′)+(w,w
′) (5.8)

5.2.10. Application: the case of a CM Elliptic curve.

Let K ⊂ F ⊂ C be an imaginary quadratic field, E(F) an elliptic curve with CM by OK .
Fix a Weierstrass model over OK :

Y 2 = 4X3 − g2X − g3 g2, g3 ∈ F

where Γ is the period lattice of the invariant differential ω = dx
y , along with a complex

uniformisation
C/Γ

∼
ÐÐ→ E(C)

z z→ (℘(z; Γ),℘′(z; Γ)).
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Recall from §4.2.5 that for L being the line bundle corresponding to the divisor [0] ∈
Div(E), one has a reduced theta function associated to [0] given by

θ(z) = exp(−
e∗2(Γ)

2
z2)σ(z)

where, the Taylor expansion around z = 0is given by (A.1)

σ(z) = z −
g2

24 ⋅ 3 ⋅ 5
z5 −

g3

23 ⋅ 3 ⋅ 5 ⋅ 7
z7 + . . .

Hence, one deduces the Taylor expansion of θ around z = 0:

θ(z) = z −
e∗2
2
z2 + higher terms of e∗2 , g2 and g3

From (ii) in the proof of Theorem 5.1.1, we showed that e∗2 was algebraic, and thus, as
g2, g3 ∈ F the Taylor expansion of θ around 0 has its coefficients in F. In fact, this shows
that the coefficients of the Laurent series of the Weierstrass functions ζ, ℘ and ℘′ has
coefficients in F. In particular, by (4.10) one has:

Lemma 5.2.11. The Laurent expansion of the Kronecker theta series Θ(z, z′) at the
origin has algebraic coefficients.

Now, consider A(F) ∶= E(F) ×E(F) and let PE be the poincaré bundle associated to
E(F). Let sD be the meromorphic section of PE associated to the divisor D = ∆ − (O ×

E) − (E ×O) defined over F, which corresponds to the reduced theta function

Θ(z, z′) =
ϑs(z + z

′)

ϑs(z)ϑs(z′)

We just saw that the two variable reduced theta function Θ has its Laurent expansion’s
coefficients in F. As it is clearly not a rational function, consider w,w′ ∈ Γ ⊗Q and an
integer N > 0 such that Nw,Nw′ ∈ Γ. For n ∈ 2NN, the rational function fMn is defined
over F(E(2n2)), hence the Taylor expansion near 0 of the function

M

ϑ+ws (v) = fMn (
v

n
)ϑs(v)

has coefficients in F(E(2n2)). Similarly,
M

ϑ+w
′

s (v) = fMn ( v
n
)ϑs(v) has also coefficients in

F(E(2n2)). Moreover, explicit computations using (4.14) show that

Θ(w,w′)(z, z
′) = exp(

w′w −ww′

2A
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈S1

M

Θ(w,w′)(z, z
′) for all w,w′ ∈ Γ⊗Q. (5.9)

We finally obtain the following corollary:
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Corollary 5.2.12. Let E be an elliptic curve over F ⊂ C with CM by OK and a Weier-
strass model

E ∶ Y 2 = 4X3 − g2X − g3 g2, g3 ∈ F

Then, for w,w′ ∈ Γ⊗ 1
nZ, the Laurent expansion of the function Θ(w,w′)(z, z

′) has coeffi-
cients in F(E[4n2]).

In particular, this corollary and theorem 4.3.1 show that the Eisenstein-Kronecker
numbers

e∗a,b(z0, z
′
0; Γ)

a!A(Γ)a
are algebraic. (5.10)

Now let χ be a Hecke character of K, with conductor f and ∞-type (a,−b) as in §3.2.11.
Let Ω ∈ C be a a complex number such that Γ = Ωf. By (3.7) one has

Lf(0, χ) =
1

ωf
∑
a∈Clf

χ(a)e∗a,b (αa,0; fa−1)

where, Ωfa−1 is also a period lattice for some Weierstrass model E′, defined over a number
field K ′. From (5.10) one deduces that

e∗a,b (αa,0; Ωfa−1)

A(Ωfa−1)a
=

Ω
a

Ωb

e∗a,b (αa,0; fa−1)

A(Ωfa−1)a
are algebraic.

On the other hand

A(Ωfa−1)a = N(fa−1)∣Ω∣A(OK) = N(fa−1)∣Ω∣

√
dK

2π

Hence, for a, b ≥ 0 with b − a ≥ 0 the numbers

(
2π

√
dK

)

a e∗a,b (αa,0; fa−1)

Ωa+b
are algebraic.

This provides another proof of Damerell’s theorem (theorem 5.1.1).
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6
Conclusion and further readings

The topic of L-functions is one of the most interesting and fascinating topics in modern
mathematics. Although they have countless generalisations, the nature of their special
values are junctions of multiple mathematical areas that hide precious treasure under-
neath.

6.1. Summary

In our case, the study of the Eisenstein-Kronecker numbers, tied to Hecke L-functions
on imaginary quadratic field led us —thanks to the key observation made by Bannai and
Kobayashi in [BK+10]— to explore and use a new approach of investigating these special
values through Mumford’s theory of algebraic theta functions. This turns out to have
particular applications as we will see. We summarise the work done here as follow:

• Study of the Eisenstein-Kronecker-Lerch series through the very rich work done by
Eisenstein and Kronecker (and nicely wrapped up by Wale): We show that this
series, in a number theoretic setting, admits an analytic continuation and satisfies
a functional equation.

• Relating the Eisenstein-Kronecker-Lerch series K1(z, z
′,1) to the Kronecker theta

function Θ(z, z′), which turns out to be a reduced theta function the unique reduced
theta function on E ×E∨.

• Study Theta functions ϑs as meromorphic sections s of a line bundle on an abelian
variety, and use Mumford’s theory to construct an algebraic theta-translation op-
erator, that preserves algebraicity.

• Applying this theory to the case of the Poincaré bundle of an elliptic curve with CM:
We show that the Laurent series of the algebraic translation of the Kronecker theta

function
M

Θ(w,w′)(z, z
′) by rational points w,w′ ∈ Γ ⊗ Q has algebraic coefficients,

which shows the algebraicity of the Eisenstein-Kronecker numbers e∗a,b(w,w
′).

6.2. Difficulties Encountered

The difficulties encountered in this process were not insurmountable. The first technicali-
ties about the singularities of the series K∗

a,b were not too hard to work around in order to
prove the main result. The main difficulty was understanding and adapting Mumford’s
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algebraic theory to a general abelian variety A(k) on a general ground field: I would
highlight the not so obvious task of making sure the translation of a point —not in A
but from its universal cover— is canonically compatible with our previous constructions.
Although the translation initially defined also preserves algebraicity (as shows eq. (5.9)),
using algebraic theta functions had much much more interesting things to offer.

6.3. Outlook: p-adic interpolation of Hecke L-functions

Going back to the Birch and Swinneton-Dyer’s conjecture for an elliptic curve E(Q):

Conjecture 6.3.1 (Birch and Swinneton-Dyer). Let E be an elliptic curve over Q, then
the Taylor expansion of its L-function is given by:

L(E(Q), s) =
1

#(E(Q)tors)2
⋅ (

something conjectured
to be finite ) ⋅∏

p

cp(s − 1)r + higher terms.

where r = rankE(Q).

This refinement is due to Wiles (see [CWC+06]). Since the sum does not converge for
s = 1, it is conjectured however (conjecture 3.3.13) that L(s,1) has analytic continua-
tion to all C. Based on numerical evidence, Birch and Swinnerton-Dyer suggested the
approximation

∏
p≤x

E(Fp)
p

≈ C ⋅ log(x)r when xÐ→∞

This leads to consider p-adic functions that interpolate the values of L(E(Q), s).

The idea behind is the following: when one studies the special values of L-functions,
and (using analytic continuation and functional equation) obtains —up to a controllable
factor— algebraic numbers, this suggests that in order to understand these values, it
should be enough to understand them locally at each prime.

Now, given a sequence of p-adic numbers (xn)n∈Z, the concept of p-adic interpolation
is the following: If one considers xn as function xn ∶ Z Ð→ Qp, the goal would be to
extend it (if possible) to a continuous p-adic function xn,p ∶ Zp Ð→ Qp. Another way to
look at it, is to construct a p-adic measure i.e. a continuous linear map

µ ∶ C (Zp,Qp) Ð→ Qp

whose moments interpolate the values of L(E(Q), s).

The following approach; using the algebraic Kronecker theta functions through Mum-
ford theory; allows to show the p-integrality of its Laurent series, when p ≥ 5 is a prime
that splits into pp in OK ([BK+10], Corollary 2.17). Bannai and Kobayashi use this
theorem to construct a p-adic measure µw,w′ on Zp×Zp; for w,w′ ∈ Γ⊗Q; that p-adically
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interpolates the Eisenstein-Kronecker numbers. Their measure µw,w′ may also be used
to construct the two-variable p-adic L-function for algebraic Hecke characters on imag-
inary quadratic fields, known from Manin-Vishik and from Katz. The approach using
the generating function gives more details however, on the p-adic properties of e∗a,b even
when the prime p (called supersingular case) does not split and remains prime in K. (see
§4 [BK+10]).
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A
Appendix A : Analytical tools

A.1. Convergence results and Fourier series on T

Let Γ = uZ⊕ vZ ⊂ C be a lattice with generators u, v ∈ C such that I(τ) > 0, τ = v
u . Let

A =
(Area of C/Γ)

π
=

1

π
I(τ) =

vu − uv

2πi
(> 0).

Lemma A.1.1 (Convergence Lemma). For k ≥ 3 the series ∑
γ∈Γ
γ≠0

1
γk

is absolutely conver-

gent.

Proof. We will show first that, the number of elements w ∈ Γ such that ∣γ∣ is between two
consecutive integers n and n + 1 is a O(n) i.e that there is a constant KΓ (that depends
only on the lattice Γ) such that there are at most nKΓ points with n < ∣γ∣ < n+1. Indeed,
for x, y in Γ there exists a δ > 0 such that ∣x − y∣ > δ. Thus for all 0 < ε < 1 and for all
γ ∈ Γ

B(γ, εδ) ∩ Γ = {γ}

Let Rn ∶= {z ∈ C ∣ n < ∣z∣ < n + 1} be some annulus or “ring”. Then for every γ ∈ Γ ∩Rn

⋃
γ∈Γ∩Rn

B(γ, εδ) ⊂ R′
n ∶= {z ∈ C ∣ n − εδ < ∣z∣ < n + 1 + εδ} (the union is even disjoint

But, the air of R′
n is given by

A(R′
n) = π(n + 1 + εδ)2 − π(n − εδ)2 = π(2n + 1)(1 + 2εδ)

Hence

#{γ ∈ Γ ∩R} ≤ ⌊
A(R′

n)

A(B(γ, εδ))
⌋ = ⌊

1 + 2εδ

ε2δ2
(2n + 1)⌋ = O(n).

Observe that δ does not depend on n, and if ε→ 1, then there is constant KΓ such that

#{γ ∈ Γ ∩R} ≤ ⌊
1 + 2δ

δ2
(2n + 1)⌋ = nKΓ

Now, we can write the sum

∑
γ∈Γ
γ≠0

1

γk
= ∑
n∈N

∑
n<∣γ∣<n+1

1

γk
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and it suffices to show the absolute convergence of the series

∑
n<∣γ∣<n+1

1

γk

Clearly,

∑
n<∣γ∣<n+1

1

∣γk∣
≤ ∑
n<∣γ∣<n+1

1

nk
< nKΓ

1

γk
=
KΓ

nk−1

and we get

∑
n∈N

∑
n<∣γ∣<n+1

1

∣γ∣k
≤ ∑
n∈N

kΓ

nk−1
which converges for all k ≥ 3.

We defined the pairing for complex numbers w, z by

⟨ z,w ⟩Γ ∶= exp(
wz −wz

A
) .

We identify the complex torus T ∶= C/Γ with its dual T∨ through the isomorphism

TÐ→ Hom (T,C×)

z z→ (w ↦ ⟨w, z ⟩Γ)

Hence, for a sufficiently well behaved function f (rapidly decreasing, smooth) the Fourier
transform of f(z) is given by

f̂(w) = ∫
T
f(z)⟨w, z ⟩dz = ∫

T
f(z)⟨ z,w ⟩dz

Proposition A.1.2 (Poisson summation for Γ). Let f ∶ Rn Ð→ C be a smooth and fast
decaying function, then

∑
γ∈Γ

f(γ) =
1

∣Γ∣
∑

γ∗∈Γ∨
f̂(γ∗)

Proof. Pose g ∶ xz→ ∑
γ∈Γ

f(x+ γ), g is clearly smooth and Γ-periodic, hence g admits the

following Fourier series expansion

g(x) = ∑
γ∗∈Γ∨

aγe
2πi(x⋅γ)

where

aγ =
1

∣Γ∣
∫Rn/Γ

g(x)e−2πi(x⋅γ) dx =
1

∣Γ∣
∑

γ∗∈Γ∨
∫Rn/Γ

f(x)e−2πi(x⋅γ) dx

=
1

∣Γ∣
∑

γ∗∈Γ∨
∫
Rn
f(x)e−2πi(x⋅γ) dx =

1

∣Γ∣
f̂(γ).
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Hence
∑
γ∈Γ

f(γ) = g(0) = ∑
γ∗∈Γ∨

aγ∗ =
1

∣Γ∣
∑

γ∗∈Γ∨
f̂(γ∗).

Definition A.1.3 (Jacobi theta function). The Jacobi theta function is the (holo-
morphic) function defined on the right half plane {z ∈ C ∣R(z) > 0} by

θ(s; Γ) = ∑
γ∈Γ

e−πs(γ⋅γ)

Now in the context of §2.3.1 we define the modified Jacobi theta function to be

θa,t(z, z
′) = ∑

γ∈Γ

exp (−t∣z + γ∣2) (z + γ)a⟨γ, z′ ⟩

Lemma A.1.4. The above function satisfies the following functional equation

θa,t(z0, z
′
0) =

⟨ z′0, z0 ⟩

(At)a+1
θa,A−2t−1(z′0, z0)

Proof. For simplicity, we pose for fixed t ∈ R>0 and z0,w0 in C:

f(z) ∶= exp(−
∣z∣2

2
) h(z, t) ∶= f (z

√
tA)

h+(z, z0, t) ∶= h(z + z0, t) k(z, z0,w0, t) ∶= h
+(z, z0, t)⟨ z,w0 ⟩

First, observe that f̂ = f : This is a known fact about the so called Gaussian function f

and simply reduces to the one variable case f̂(w) =
n

∏
1
I(w) where

I(w) = exp (−πγ2)∫
R

exp (−π(z + iw)2) dz = exp (−πw2)

On the other hand

ĥ(w, t) = ∫
T
f (z

√
tA) ⟨ z,w ⟩dz =

1

tA
∫
T
f (x) ⟨x,

w
√
tA

⟩dx
by performing the change
of variable x = z

√
tA

=
1

tA
f̂ (

w
√
tA

) =
1

tA
exp(−

∣w∣2

tA2
)

Thus

k̂(w, z0,w0, t) = ∫
T
k(w, z0,w0, t)⟨ z,w ⟩dz = ∫

T
h+(z, z0, t)⟨ z,w +w0 ⟩dz = ĥ+(w +w0, t)

Where

ĥ+(w, z0, t) = ∫
T
h (z + z0, t) ⟨ z,w ⟩dz = ∫

T
h (x, t) ⟨x − z0,w ⟩dx

by performing the change
of variable x = z + z0

= ⟨w, z0 ⟩ĥ (w, t) =
⟨w, z0 ⟩

tA
exp(−

∣w∣2

tA2
)

Universität Regensburg, Department of Mathematics, 2020 95



The generating function of Eisenstein-Kronecker numbers

Thus one finally gets

k̂(w, z0,w0, t) =
⟨w +w0, z0 ⟩

tA
exp(−

∣w +w0∣
2

tA2
) =

⟨w0, z0 ⟩

tA
k(w,w0, z0,A

−2t)

Now, applying Poisson summation we get

θ0,t(z0, z
′
0) = ∑

γ∈Γ

k(γ, z0,w0, t) =
1

tA
∑
γ∈Γ

⟨w0, z0 ⟩k(γ,w0, z0,A
−2t)

=
1

tA
θ0,A−2t−1(z′0, z0)

Hence, the result follows by induction on a, and taking the derivatives d
dz .

A.2. Weierstrass’s Elliptic functions

One of the most famous elliptic functions are Weirstrass’s ℘, σ and ζ functions, defined
by

℘(z,Γ) ∶=
1

z2
+ ∑
γ∈Γ∖{0}

(
1

(z + γ)2
−

1

γ2
)

σ(z,Γ) ∶= z ∏
γ∈Γ∖{0}

(1 −
z

γ
) exp(

z

γ
+
z2

2γ2
)

ζ(z,Γ) ∶=
1

z
+ ∑
γ∈Γ∖{0}

(
1

z − γ
+

1

γ
+
z

γ2
)

where, the ζ function satisfies for z ∈ C ∖ Γ

ζ(z) =
σ′(z)

σ(z)
and ζ ′(z) = −℘(z)

Observe that

d
dz (

σ(z+γ)
σ(z) )

σ(z+γ)
σ(z)

=
d

dz
(ln

σ(z + γ)

σ(z)
) = η(γ)

⇒
σ(z + γ)

σ(z)
e−η(γ)z = eδ

where δ is some constant and η is the quasi-period (or Weirstrass’s eta function) defined
by

η ∶ ΓÐÐ→ C
γ z→ η(γ) ∶= ζ(z + γ) − ζ(z).
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The function η is independent∗ from z and clearly Z-linear, thus it is entirely determined
by the periods (ω1, ω2). Moreover, it satisfies the Legendre formula

η(ω2)ω1 + η(ω1)ω2 = 2πi

To see that, choose a parallelogram with vertices ABCD as in the figure A.1.

A B

CD

ω1

2

ω2

2

ω1

2

ω2

2

Figure A.1.: Parallelogram ABCD

Then by Cauchy’s theorem one
has

∫
ABCDA

ζ(z)dz = 2πi

On the other hand, one sees
that

∫
CD

ζ(z)dz = ∫
BA

ζ(z + ω2)dz

= ∫
BA

ζ(z) + η(ω2)dz

= ∫
BA

ζ(z)dz − η(ω2)ω1.

This implies that

∫
AB

ζ(z)dz + ∫
CD

ζ(z)dz = −η(ω2)ω1

∫
BC

ζ(z)dz + ∫
DA

ζ(z)dz = η(ω1)ω2

Finally, we present the Laurent expansion around z = 0 of the Weierstrass’s σ- function,
given in [WM66](§10.5 p.391) or [MA70](18.5.6 p.635-636) by

σ(z) = ∑
m,n≥0

am,n (
g2

2
)
m

(2g3)
n z4m+6n+1

(4m + 6n + 1)!
(A.1)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0,0 = 1

am,n = 0 if m < 0 or n < 0

am,n = 3(m + 1)am+1,n+1 +
16
3 (n + 1)am−2,n+1

−2
3(2m + 3n − 1)(4m + 6n − 1)am−1,n

if m,n > 0

∗Indeed, one easily checks that for γ ∈ Γ : d
dz

(ζ(z + γ) − ζ(z)) = −℘(z + γ) + ℘(z) = 0
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B
Appendix B : Review of Algebraic

Geometry

B.1. Class field theory

We provide a review of the concepts which have been used (implicitly or explicitly) during
the development of chapter 3 and chapter 4. Most of the proofs can be found in the very
complete and classic [Mil08b] or any other textbook on algebraic number theory. Let K
be a number field, Kp its completion at each place vp. Moreover, let Op be the ring of
integers of Kp for all non-archimedean places, and let Ov =Kv otherwise.

Definition B.1.1. Let L/K be a finite Galois extension of number fields with Galois
group G, p an unramified prime of K in L and P the prime of L lying over p. Let
l = OL/P, k = OK/p be the residue fields of LP and Kp respectively. Then one has an
isomorphism

G(P) ≅ Gal(LP/Kp) ≅ Gal(l/k)

where G(P) = {σ ∈ Gal(L/K) /σP = P} is the decomposition group of P and Gal(l/k)
is generated by the Frobenius automorphisms φL/K defined by the formula

φL/K(a) = aq for all a ∈ L.

The image of such an automorphism of Gal(l/k) in Gal(L/K), that generates G(P), is
called the Frobenius element of Gal(L/K) at P and denoted (P, L/K).

For any σ ∈ Gal(L/K) and α ∈ OL one has

σ(P, L/K)σ−1 ⋅ α ≡ σ(σ−1 ⋅ α)q ≡ αq mod σP ⇒ σ(P, L/K)σ−1 = (σP, L/K)

where q = #k. Moreover, if L/K is abelian, then the Frobenius elements (P, L/K) for
all P over p are equal and one simply writes (p, L/K).

Definition B.1.2 (Artin reciprocity map). Let L/K be a finite abelian extension, and
let S be a set of primes of K containing all the primes that ramify in L. Let ISK be the
subgroup of the ideal group IK generated by p in K ∖S. Define the Artin reciprocity
map to be the surjective homomorphism

( ⋅ , L/K) ∶ ISK ÐÐ→ Gal(L/K)

t

∏
i=1

pnii z→
t

∏
i=1

(pi, L/K)ni
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The Artin map factors through

ISK NL/K(ISL)

Gal(L/K)

( ⋅ ,L/K)

NL/K

where ISL is generated by the primes P over p ∈ S. (this is due to the fact that
NL/K(P) = pf(P/p) for P over p in K.)

In general, when K is not totally imaginary, one has a notion of a modulus m (when K
is totally imaginary, it is just an integral ideal)

Definition B.1.3 (Modulus function). A modulus of K is a function

m ∶ { places of K} Ð→ N

satsifying:
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(p) = 0 for almost all

m(p) ∈ {0,1} if vp is real

m(p) = 1} if vp is complex

One usually writes the modulus as a formal product

m =∏
p

pm(p).

Define S(m) ∶= {p ∶ m(p) > 0} and let Pm be the group of principal fractional ideals (α)
such that α is positive under all real embeddings of K, and α − 1 ∈ pm(p) for all finite vp.
The quotient

Cm(K) ∶= I
S(m)
K /Pm

is called the ray class group of K, modulo m.

Theorem B.1.4 (Artin reciprocity). Let L/K be a finite abelian extension. Then there
exists a modulus m such that S(m) contains all primes of K that ramify in L and
Pm ⊆ ker( ⋅ , L/K). The Artin map factors to an isomorphism

I
S(m)
K /

PmNL/K(I
S(m)
L )

≅ Gal(L/K)

In particular, for a congruence subgroup H with

Pm ⊆H ⊆ I
S(m)
K
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Takagi showed ([Tak22] which goes by the name of the existence theorem) that there
exists a finite abelian extension L/K such that

H = PmNL/K(I
S(m)
L )

By Artin reciprocity, one has then an isomorphism

I
S(m)
K /H ≅ Gal(L/K).

In this case, L is called the class field of H.

Remark B.1.5. (i) An important example occurs when H = Cm, and the class field Km

of Pm is then called the ray class field modulo m. In this case, the Artin map
induces an isomorphism

Cm ≅ Gal(Km/K)

between the ray class group and Gal(Km/K).

(ii) When m = 1, the ray class field of K is called theHilbert class field KH of K, and
is therefore, the maximal unramified abelian extension of K. The Artin reciprocity
gives in this case, an isomorphism

Cl(K) ≅ Gal(KH/K)

between the ideal class group of K and Gal(KH/K).

The idèlic formulation of class field theory, which provides a perspective of class field
theory in terms of idèles rather than in terms of ideals, is based on the Artin reciprocity
map described in the following:

Definition B.1.6. Let L/K be a finite field extension. The norm map is given by

NL/K ∶ JL ÐÐ→ JK
(sP)P z→ (∏

P∣p

NLP/Kp
sP)p

Theorem B.1.7 (Artin reciprocity - idèles). Let Kab be the maximal abelian extension
of K. There is a unique continuous homomorphism

[⋅,K] ∶ JK ÐÐ→ Gal(Kab/K)

sz→ [s,K]

such that for any finite abelian extension L/K and idèle s ∈ JL where (s) is not divisible
by any prime that ramify in L:

[s,K]∣L = ((s), L/K)

Moreover,
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(i) [⋅,K] is surjective and K× ⊆ ker[⋅,K].

(ii) If L/K is a finite abelian extension, then

[s,L]∣Kab = [NL/K(s),K] for all s ∈ JL.

(iii) If p is a prime of K and L/K is an abelian extension that does not ramify at p,
then

[π,K]∣L = (p, L/K),

where π = (1, . . . , πp

↑
pth component

, . . . ,1) is an idèle of K and πp a uniformizer of Op.

If Km is the ray class field of K modulo some modulus m and

Um ∶= {s ∈ JK / sp ∈ O
×
p , sp − 1 ∈ pm(p) for all vp ∤ ∞, sp > 0 for all real vp},

which is an open subgroup of JK , then the Artin map factors to an isomorphism

[⋅,K] ∶ JK/K×Um
≅ Gal(Km/K).

B.2. Algebraic abelian varieties

Through all this section, k will denote an algebraically closed field.

Definition B.2.1. An algebraic variety A(k) over a field k is an integral and separated
scheme over k which is of finite type.
For a scheme S, a Group scheme or an algebraic group is a group object in the
category of schemes over k, i.e. an S-scheme G with morphisms

m ∶ G ×S G Ð→ G , e ∶ S Ð→ G and inv ∶ G Ð→ G

satisfying the group axioms.

A homomorphism of group schemes f ∶ G Ð→ G′ is a morphism of S-schemes such
that

f ○ e = e′, m′ ○ f2 = f ○m and inv′ ○ f = f ○ inv

One defines the kernel of such a homomorphism, to be the subgroup scheme satisfying
the fibre product condition:

ker f G

S G′

f

e′
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A noticeable example of a group scheme is the multiplicative group Gm over the base
scheme Z, given by Gm ≅ SpecZ[T,T −1] and

e ∶ Z[T,T −1] Ð→ Z,
T z→ 1

inv ∶ Z[T,T −1] Ð→ Z,
T z→ T−1

m ∶ Z[T,T −1] Ð→ Z[T,T ′, T −1, T −1]

T z→ TT ′

Definition B.2.2 (Abelian variety). An (algebraic) abelian variety X(k) is a group
scheme which is a complete variety over k.

A homomorphism of abelian varieties f ∶ X(k) Ð→ Y (k) is a homomorphism of
the underlying group schemes.

one has an important result:

Lemma B.2.3 (Rigidity lemma). Let f ∶ X(k) × Y (k) Ð→ Z(k) be a morphism of
varieties over k. Suppose X is proper and that f(X(k) × {y0}) = f({x0} × Y (k)) = {z0}

for some x0 ∈X(K), y0 ∈ Y (k) and z0 ∈ Z(k). Then

f(X × Y ) = {z0}

Proof. Let U(Z) be an affine neighbourhood of z0. Since X is proper, p2 ∶ X × Y Ð→ Y
is closed, thus A = p2 (f

−1(Z ∖U(Z))) ⊂ Y is closed. By assumption, y0 ∈ Y ∖A which
makes it dense.

Let y ∈ Y ∖ A. Observe first that f(A × {y}) ⊂ U(Z). As X is proper and U(Z)

affine, f(A × {y}) is reduced to a point and

f({x0} × {y}) ∈ f(A × {y}) ∩ f({x0} × Y ).

Hence, by assumption, {z0} = f(A × {y}) for all y ∈ Y ∖ A. Thus f is constant on
X × (Y ∖A) and by density the result follows.

In particular, one has the following:

Proposition B.2.4 (Morphisms of abelian varieties). Let f ∶ X(k) Ð→ Y (k) be a mor-
phism of abelian varieties, then f is the composition of a homomorphism and a transla-
tion.

Proof. Let g ∶ xz→ f(x) − f(0) and consider

h ∶ X(k) ×X(k) ÐÐ→ Y

(x,x′) z→ g(x) + g(x′) − g(x + x′)

Clearly, h (X(k) × {eX}) = f ({eX} ×X(k)) = {eY }. Thus, by the rigidity lemma, one
gets

g(x) + g(x′) = g(x + x′)
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Remark B.2.5. Note that, by applying the same reasoning, the rigidity lemma (applied
to the map inv ∶ X(k) Ð→ X(k)) implies that the group law of an abelian variety is
always commutative. This somehow justifies the choice of the nomenclature.

For any point a ∈X(k) we define the translation morphism

ta ∶ X(k) ÐÐ→X(k)

xz→ x + a

and for all integer n the endomorphism

[n] ∶ X(k) ÐÐ→X(k)

xz→ nx

Theorem B.2.6 (Theorem of the square). For a line bundle L on an abelian variety
X(k) and for all points x,x′ ∈X(k) one has

t∗x+x′L ≅ t∗x ⊗ t
∗
x′0

Proof. For a proof, see [DM70].

Mumford gives an algebraic proof of this theorem. In his proofs, he makes use of a very
useful and technical Lemma (Corollary 6 p.54, [DM70]) known as the Seesaw principle:

Lemma B.2.7 (Seesaw principle). For a complete variety X(k) and a line bundle L on
X × T where T is any variety. The set

T1 = {t ∈ T ∣ L is trivial on X × T}

is closed in T . Moreover
L∣X×T1

≅ p∗2M

for some line bundleM on T1 (with the reduced scheme structure).

In particular, one has the following corollaries:

Corollary B.2.8. For any line bundle L on X(k) and any integer n one has

[n]∗L ≅ L⊗
n2

+n
2 ⊗ inv∗L⊗

n2
−n
2 .

Corollary B.2.9. For any line bundle L on an abelian variety X(k) the map

φL ∶ X(k) ÐÐ→ Pic(X)

xz→ t∗x ⊗L
−1

is a homomorphism. Moreover, for x ∈X(k)

φt∗xL = φL.
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Now we take a look at abelian varieties over C. From an analytical point of view, an
abelian variety X(C) is a compact complex Lie group of dimension g. If we take V to
be the tangent space of X(C) at the identity, then one knows from differential geometry
that ∀v ∈ V , one has a unique diffeomorphism ϕv ∶ CÐ→X(C) with dϕv(0) = v and

exp ∶ V ÐÐ→X(C)

v z→ ϕv(1).

Clearly, exp is a surjective group homomorphism since for all z ∈ C one has that
d exp(zv) exp(zw)∣z=0 = v + w. By uniqueness, one gets exp(zv) exp(zw) = exp z(v +w)

and exp(V ) ≤ X(C) contains a neighbourhood of 1. If Γ ∶= ker(exp), then Γ is discrete
(since exp is a local homéomorphism) and by compactness, it must have full rank. Thus,
one obtains the analytic uniformisation of abelian varieties over C:

X(C) ≅ Cg/Γ where Γ is a lattice in Cg. (B.1)

The isomorphism is understood as an isomorphism of Lie groups. This makes it easier
to understand the torsion points of a complex abelian variety X(C).

As a group, C
g
/Γ ≅ (R/Z)

2g
. Hence, for an integer n, if we denote the n-torsion group

of X(C) by
X[n] ∶= {x ∈X(C) ∣ nx = 0},

one clearly has

X[n] ≅ (R/Z)
2g

[n] ≅ (R/Z[n])
2g
≅ (S1[n])

2g
≅ (Z/nZ)

2g
. (B.2)

Remark B.2.10. This result still holds for any algebraically closed field k of characteristic
zero by the Lefschetz principle. Moreover, we will see later on that this also holds for
algebraically closed fields of positive characteristic with (n, chark) = 1 since for any
divisor d of n, the isogeny [d] is finite, étale and has degree d2g. Thus X[d] is an étale

group scheme of rank d2g for all divisor d. It must hence be (Z/nZ)
2g
.

Definition B.2.11 (k-isogenies). Let X(k) and Y (k) be abelian varieties over k. An
isogeny is a homomorphism of abelian varieties f ∶ X(k) Ð→ Y (k) such that ker(f) is
finite. The rank of the finite group scheme ker(f) is called the degree of f .

We have a useful characterisation of isogenies as follow:

Proposition B.2.12. Let f ∶ X(k) Ð→ Y (k) be a homomorphism of abelian varieties.
Then the following are equivalent:

• f is an isogeny.

• dimX(k) = dimY (k) and f is surjective.

• f is finite, flat and surjective.
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Proof. See [Mil08a](Prop. 8.1).

Example B.2.13. This makes it easier to exhibit some examples of isogenies.

(i) If k = C, an isogeny is a covering f ∶X(C) Ð→ Y (C) with Galois group ker(f).

(ii) If k is any field of chark ≥ 0, then an isogeny is an étale map.

Let X(k) be an abelian variety over k and let Endk(X) ∶= Homk(X,X) be its en-
domorphsim ring. Note that if f ∈ Endk(X) is not an isogeny, it cannot be surjective.
Define for all f, g ∈ Endk(X)

degk ∶ Endk(X) ÐÐ→ N

f z→ degk(f) = {
rank ker(f) if f is an isogeny

0 else

with degk(fg) = degk(f)degk(g). A noticeable endomorphism of X(k) is the map

[n] ∶ X(k) ÐÐ→X(k)

xz→ x + ⋅ ⋅ ⋅ + x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

Hence, we adopt the new notation [−1] ∶= inv for the inverse map and define [−n] ∶=
[n] ○ [−1]. This defines a canonical isomorphism Z ≅ A ≤ Endk(X) where A is a subring
of Endk(X). One then has that

X[n] = ker ([n] ∶X(k) Ð→X(k)) .

SupposeM is a very ample line bundle, then L ∶=M× [−1]∗M is ample and

[−1]∗L ≅ L (such a line bundle is called symmetric)

Now take L′ ∶= L⊗r for some sufficiently large r so that L′ is very ample. Then from
(corollary B.2.8), one has

[n]∗L′ ≅ L′⊗n
2

.

In particular, their restriction onX[n] is trivial (since the mapX[n] ↪Ð→X(k)
[n]
ÐÐ→X(k)

is constant) which is only true if X[n] has rank 0 and thus [n] is an isogeny. Thus, for
L′ = OX(D) where D is an effective Cartier divisor, the intersection product is given by

degk[n] ⋅D . . .D = [n]∗D . . . [n]∗D = n2D . . . n2D = n2gD . . .D

As D . . .D ≠ 0 (since L′ is very ample), one sees that

[n] is an isogeny of degree degk[n] = n
2g. (B.3)
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Remark B.2.14 (Isogeny as an equivalence relation). Finally, given an isogeny f ∶X(k) Ð→ Y (k)
of abelian varieties; of degree say n; one can construct an isogeny g ∶ Y (k) Ð→X(k) such
that g ○ f = f ○ g = [n] as follow:

X(k) X(k)/ker f Y (k)

X(k)/X[n]

X(k)

[n]

π1

f

π2

ψ

≃

π

g

ϕ

ρ≃

where

● ψ exists by universal property.
● ϕ = π ○ ψ−1

● ρ exists by universal property.
● g = ρ ○ ψ

g = ρ ○ π ○ ψ−1 is an isogeny since π is an isogeny and ψ and ρ are isomorphisms. This
shows that isogeny induces an equivalence relation in the category of abelian varieties.
Let Pic0(X) = { line bundles L on X(k) ∣ t∗xL ≅ L∀x ∈X(k) }.

Definition B.2.15. Let X(k) be an abelian variety over k. The dual abelian variety
of X(k) is defined to be the abelian variety X∨(k) along with the line bundle P on
X(k) ×X∨(k) satisfying:

(i) P∣X(k)×{y} ∈ Pic0(Xy).

(ii) P∣{0}×X∨(k) is trivial.

(iii) The pair (X∨(k),P) satisfies the following universal property: For all pair (Y,M)

where Y is an abelian variety andM a line bundle on X ×Y satisfying (i) and (ii),
there exists a unique morphism f ∶ Y Ð→X∨(k) such that

M≅ (id × f)∗P.

This is equivalent to

Homk(Y,X
∨) ↔

{
line bundlesM on X × Y

satisfying (i) and (ii) }
/≅.

In particular, if Y = Spec(k) then X∨(k) = Pic0(X).

Mumford constructs the dual abelian variety scheme-theoretically in [DM70](III. §13)
as follows: He shows first that for an abelian variety X(k) and some arbitrary scheme
S there exists a unique closed subscheme S′ ≤ S such that for every scheme T and every
morphism f ∶ Z Ð→ S:

f factors through S′ ⇔ (id×f)∗M≅ p∗2L
′ for some line bundle L′ on S,
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whereM is a line bundle on X(k)×S. Applying this to the Mumford bundle on X ×X,
one sees that

M(L) =m∗L⊗ p∗1L
−1 ⊗ p∗2L

−1 where L is a line bundle on X(k).

This provides a closed subscheme X ′ with the same universal property. Since for each
x ∈X(k)

M(L)∣X(k)×{x} ≅ t
∗
xL⊗L

−1

One can view K(L) as a scheme, whose rational points are

K(L)(k) = {x ∈X(k) ∣M(L)∣X(k)×{x} is trivial } =X ′(k)

Mumford then shows that it is a subgroup scheme of X, and that it is finite if and only
if L is ample. (Recall that a line bundle L over a proper scheme S is ample if there
exists a positive integer n > 0 such that L⊗n is basepoint-free and admits an embedding
into projective space.) He thus defines the dual abelian variety X∨(k) of X(k) to be the
quotient scheme

X∨(k) =X(k)/K(L)(k) for some ample line bundle L on X(k).

One has a quotient map π ∶ X(k) ×X(k) Ð→ X(k) ×X∨(k) (induced by the action of
K(L)) given by id×φL. It only suffices to show that the mumford bundleM(L) corre-
sponds to a line bundle P on X(k) ×X∨(k) such that π∗P =M(L).

Moreover, Mumford shows that X∨(k) is an abelian variety on k with the same di-
mension as X(k) and that the duality is functorial in X(k) with the property:

(X(k)∨)
∨
≅X(k).

Definition B.2.16 (Polarisation). Let X(k) be an abelian variety. A polarisation of
X(k) is an isogeny ϕ ∶X(k) Ð→X∨(k) such that

ϕ∣k = φL for some very ample line bundle L.

where

φL ∶ X(k) ÐÐ→X∨(k)

xz→ t∗xL⊗L
−1.

A polarization is said to be principal if it induces an isomorphism X(k) ≅X∨(k).

Remark B.2.17. (i) Note that for dimX > 1, X(k) and X∨(k) are isogenous but not
necessarily isomorphic. Indeed, suppose chark = 0 and let X(k) be an abelian
variety over k with Endk(X) ≅ Z and dimX = 2. Let P be a point of order 2, and
let Y =X/⟨P ⟩.
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Suppose f ∶ Y ∼
ÐÐ→ Y ∨ was an isomorphism and consider the endomorphism

g ∶X
π
ÐÐ→ Y

f
ÐÐ→ Y ∨ π∨

ÐÐ→X∨

Note that
degk(g) = degk(π)degk(f)degk(π

∨) = degk(q)
2 = 4.

But since Endk(X) ≅ Z, there is an integer n such that g = [n] (by remark B.2.14).
Thus, 4 = deg(g) = deg([n]) = n4 (by B.3) which is impossible. Thus for dimX > 1,
a principal polarization does not need to exist.

More generally, if X(k) is a g-dimensional p.p.a.v. over C with Endk(X) ≅ Z, and
G is a finite subgroup such that ∣G∣ ≠ ng for some integer n then Y (k) ∶= X(k)/G
is an abelian variety that admits no∗ principal polarization.

(ii) The morphism π∨ in (i) is called the dual morphism of π. More generally, for any
morphism f ∶ X(k) Ð→ Y (k) of abelian varieties, there exists a dual morphism
f∨ ∶ Y ∨(k) Ð→ X∨(k) by applying the universal property (iii) in definition B.2.15
withM= (f×id)∗P, P the poincaré bundle on Y ×Y ∨. Moreover, if f is an isogeny,
then so is f∨ and one has degk(f) = degk(f

∨) (see [DM70] II. §15 Theorem 1)

B.3. Elliptic curves over local fields

In this section, we let E be an elliptic curve over some non-archimedean local field K.
Let OK its ring of integers, m its maximal ideal and k ∶= OK/m its residue field (which
is perfect). (Note that the results proven in this section are also valid for K = C)

B.3.1. The Good, the Bad, and the Multiplicative

An elliptic curve E(K) is given by a Weierstrass equation

E ∶ y2 + (a1x + a3)y = x
3 + a2x

2 + a4x + a6 where ai ∈K.

We define the following useful quantities:

c4 ∶= (a2
1 + 4a2)

2 − 24(a1a3 + 2a4) and c6 ∶= −(a2
1 + 4a2)

3 + 36(a2
1 + 4a2)(a1a3 + 2a4))

−216(a2
3 + 4a6)

And thus

∆(E) =
c3

4 − c
2
6

1728
and j(E) =

c3
4

∆(E)
.

∗Although:

Theorem B.2.18 ([DM70] Corollary 1 p.216). Every abelian variety X(k) is isogenous to a p.p.a.v.
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One notices that any change of variable in (x, y) preserving this form of equation (i.e.
changes of the form (x′ = u−2x, y′ = u−3y) for some u ∈ K

×
) produces coefficients aiui.

Hence, one can find a suitable u so that all coefficients of the given Weierstrass equation
are in OK (by choosing πn ∣ u for some large n) and thus, ∆(E) ∈ OK and v(∆) ≥ 0.
(In fact there always exists a change of coordinates giving c′4 = u−4c4, c

′
6 = u−6c6 and

∆′ = u−12∆)

Definition B.3.2. (Weierstrass model) The OK-scheme X ↪Ð→ P2
OK
Ð→ SpecOK de-

fined by a Weierstrass equation with coefficients in OK is said to be a Weierstrass
model for E(K). Moreover, if v(∆) is minimal, then the model is called minimal. The
fibre

Ẽ ∶X ×SpecOK Speck

is called the reduction of E at v.

In other words, the curve Ẽ(K) defined by the minimal Weierstrass equation

Ẽ ∶ y2 + (ã1x + ã3)y = x
3 + ã2x

2 + ã4x + ã6 with ãi ∈ OK

is the reduction of E(k). It is a genus 1 projective curve that always exists and is unique
up to a change of coordinates. Moreover, it can only have at most one singularity: (In
order to avoid computational complications -this is a fancy way to just say I am lazy- we
may assume that chark ≥ 5)
Any projective variety X given by a Weierstrass equation has the form

X ∶ y2 = x3 +Ax +B.

At any singular point (x0, y0) one has that

2y0 = 3x2
0 +A = 0 ⇒ y0 = 0

and x0 is a double root of x3 +Ax +B, hence there can only be one.

Definition B.3.3. (Type of reduction of an elliptic curve) Let E be an elliptic curve as
above, Ẽ(k) its reduction at some v.

(i) E(k) is said to have good reduction if Ẽ(k) is non singular (i.e. an elliptic curve
over k.)

(ii) If not, then E(k) is said to have bad reduction. We distinguish two cases:

(a) if Ẽ(k) has a node, we say that E(k) has multiplicative reduction.

(b) if Ẽ(k) has a cusp, we say that E(k) has additive reduction.

In practice, the elliptic curve E(K) has good reduction if and only if the discriminant
∆ is a unit in OK . When v(∆) > 0, the reduction is multiplicative if c̃4 ∈ O×K and is
additive if v(c̃4) = 0.
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Example B.3.4. ForK = Q, no elliptic curve can have everywhere good reduction. Indeed,
if it did, that would mean that the equation

4A3 + 27B2 = ±1

would have solutions in Q for some integers A,B, which is just... not true.

However, an elliptic curve that has bad reduction over K can have good reduction
over some of its finite extensions. When this is the case, E(K) is said to have potential
good reduction over K. We have the following useful criteria:

Proposition B.3.5. An elliptic curve E(K) has potential good reduction if and only if
j(E) ∈ OK .

Proof. For convenience (here is another one), suppose charK ≥ 5 and consider an elliptic
E′(K ′), with K ′ a finite extension of K.

⇒) Suppose E′ has good reduction over K ′. Then its discriminant ∆′ ∈ O×K′ and thus

j(E) =
(c̃′4)

3

∆′
∈ O×K′

where c̃′4 is as seen above. Since E(K) is defined over K, j(E) ∈ K and hence
j(E) ∈ OK .

⇐) Let K ′ be some finite extension of K such that E admits a Weierstrass equation
of the form†:

E ∶ y2 = x(x − 1)(x − λ) with λ ∈K ′, λ ≠ 0,1.

Observe that, since j(E) ∈ OK

(1 − λ + λ2)3 − j(E)λ2(1 − λ)2 = 0 ⇒ λ ∈ OK and λ ≢ 0,1 mod m

Hence E has integral coefficients and potential good reduction.

Example B.3.6. • An elliptic curve E(C) with CM has everywhere potential good
reduction. More generally, over a number field F with CM, E(F) has potential
good reduction at every prime of F.

• We illustrate an explicit example: Let F ∶= Q5 and consider the elliptic curve given
by

E ∶ y3 = x3 + 5 (B.4)

Then clearly one has

c4 = 0 and ∆(E) = −10800 = −24 ⋅ 33 ⋅ 52 ⇒ {
v5(c4) = ∞ > 0,
v5(∆) = 2 > 0.

†This is called the Legendre form and always exists, provided charK ≠ 2. See ([Sil86] III, 1.7).
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Hence, E(Q5) has (additive) bad reduction on Q5.
Now, consider the the finite extension Q5(

6
√

5)/Q5, then the equation (B.4) is no
longer minimal. We consider the change of variable (x′ = (5−

1
3 )x, y′ = (5−

1
2 ) y), we

then obtain the equation
E′ ∶ (y′)3 = (x′)3 + 1

We clearly see that

∆′ ∶= ∆(E′) = −432 = −24 ⋅ 33 ⇒ v5(∆
′) = 0

and thus, E(Q5(
6
√

5)) has good reduction.

B.3.7. L-functions associated to elliptic curves

Let E be an elliptic curve over a number field F. Let p be a prime of F and Fp be the
residue field at p, with qvp its number of elements. We define the polynomial

fv(X) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

qvX
2 − avX + 1 if E has good reduction at v
±X + 1 if E has (multiplicative) bad reduction at v

1 else

where av ∶= qv + 1 −#Ẽ(Fv).

Definition B.3.8 (Weil-Hesse L-function). For an elliptic curve E over a number field
F, The Hasse-Weil L-function of E is defined to be the Euler product

L(E(F), s) = ∏
v∤∞

1

Lv(E(F), s)

where, the factors are called the local L-functions at v and are defined by

Lv(E(F), s) ∶= fv (
1

qsv
) .

This product converges for values R(s) > 3
2 .

Remark B.3.9. (i) For the places at infinity, J.-P. Serre gave (relatively out of the
scope of this thesis) definition in the Séminaire Delange-Pisot-Poitou in 1970, this
can be found in [Ser70].

(ii) A CM elliptic curve over a number field F cannot have multiplicative reduction:
Given an elliptic curve E(F) and a (finite) place v. If E(F) has CM by OK with K
an imaginary quadratic field, then as seen before, it has potentially good reduction
everywhere. Let F′ be a field extension where it has good reduction, v′ a valuation
extending v. Consider the change of variable (x′ = f(u,x), y′ = g(u, y)) such that
E is minimal on F′ with c′4 = u−4c4, ∆′ = u−12∆.
As u ∈ OF′ , one has that

v′(c′4) + 4v′(u) = v′(c4) ≥ 0 and 0 ≤ v′(∆′) + 4v′(u) = v′(∆′) ≥ 0
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Hence,

0 ≤ v′(u) ≤ min(
1

12
v′(∆),

1

4
v′(c4)) .

But E has good reduction on F′, so v(∆) = 0 and thus, v′(u) = 0. One finally gets
that v′(∆′) = v′(∆) = 0 and this implies good reduction at F′.
This shows that the CM elliptic curve E(F) cannot have multiplicative reduction, so
either good or (additive) bad. Hence, its local L-function is given by the quadratic
polynomial

fv(X) = {
qvX

2 − avX + 1 = (1 − αvX)(1 − αvX) if E has good reduction at v
1 if E has bad reduction at v

We end this section by the following: The key in relating the local L-functions to the
Hecke ones is the observation: one might think of the function v z→ αv as an algebraic
Hecke character on K, with its values in F. This would allow to write the L-function of
a CM Elliptic curve as the product of two Hecke L-functions of its Hecke character:

Theorem B.3.10 (Deuring). Let E be an elliptic curve over F with CM by OK and
suppose that K ⊂ F. Then the global L-series of E(F) is given by

L(E(F), s) = L(s,χE)L(s,χE))

Proof. For a proof, see [Sil94].
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List of notations/Index

z, z′ complex numbers
I(z) imaginary part of z
R(z) real part of z

εn(z) Eisenstein’s trigonometric function
+∞

∑
k=−∞

1
(z+k)n

ω1, ω2 a pair of fundamental periods
Γ a lattice ω1Z⊕ ω2Z in C
u, v some generators of Γ
A(Γ) area of Γ divided by π
ξ change of variable ξ = z

u
τ modular period
B2n Bernoulli numbers
En(z; Γ) Eisenstein series ∑

γ∈Γ

1
(z+γ)k

∑e Eisenstein’s summation
e2k the value of E2k(z; Γ) − 1

z2k near 0.
ζ(z; Γ) Weierstrass’s zeta function
℘(z; Γ) Weierstrass’s p function
σ(z; Γ) Weierstrass’s sigma function
E∗
n(z; Γ) modified Eisenstein series

Ea,b(z; Γ) Eisenstein-Kronecker series ∑
γ∈Γ

(z+γ)a

(z+γ)b

E∗
a,b(z; Γ) modified Eisenstein-Kronecker series

ea,b the values of Ea,b(z) − za

zb
near z = 0

e∗a,b the values of E∗
a,b(z) −

za

zb
near z = 0

⟨ . , . ⟩Γ a complex pairing defined by ⟨ z, z′ ⟩Γ = exp ( zz
′−z′z
A(Γ)

)
∗

∑
γ∈Γ

sum over γ ∈ Γ with γ ≠ −z when z ∈ Γ

K∗
a (z, z

′; Γ) Eisenstein-Kronecker-Lerch series
∗

∑
γ∈Γ

(z+γ)a

∣z+γ∣2s
⟨γ, z′ ⟩Γ

θ(z; Γ) Jacobi theta function ∑
γ∈Γ

e−πz(γ⋅γ)

θa,t(z, z
′) modified Jacobi theta function ∑

γ∈Γ
e−t∣z+γ∣

2
(z + γ)a⟨γ, z′ ⟩

e∗a,b(Γ) Eisenstein-Kronecker numbers e∗a,b(0,0; Γ) =K∗
a+b(0,0, b).

K, OK a number field K and its ring of integers OK
Kv, Ov completion of K with respect to the valuation v, its ring of integers Ov;
πv uniformizer of Ov
χ Hecke (resp. Dirichlet) character
χ∞ infinity type of a Hecke character χ
f conductor of a Hecke character
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I(f) set of fractional ideals of K prime to f
P (f) set of principal fractional ideals of K prime to f
Pf set of principal fractional ideals of a = (α) such that α ≡ 1 mod∗ f
Cl(K) ideal class group of K
AK ring of adeles of K
JK group of ideles of K
Cl(K) the idele class group (JK/K×) of K
OX sheaf on X
L line bundle
tz translation operator by z
eγ multiplier i.e. holomorphic invertible function satisfying (4.1)
ϑs reduced theta function associated to a section s of a line bundle L
ϑD reduced theta function associated to a divisor with associated line bundle L ≅ OX(D)

ϑ+wD translated theta function (4.6)
αz character defined by αz(γ) = exp (2πiE(v, γ)
Pic(X) Picard group of isomoprhism classes of line bundles on X
Pic0(X) connected component of Pic(X)

P the Poincare bundle
θ theta function associated to the divisor D = [0] given by θ(z) = exp (−

e∗2
2 z

2)σ(z)

Θ the Kronecker theta function given by Θ(z, z′) =
θ(z+z′)
θ(z)θ(z′)

Θ(w,w′) translated Kronecker theta function (4.13)
A(F) (analytic) abelian variety over F
g dimension of A
X(F) (algebraic) abelian variety over F
A[N] N -torsion group of A
Tl(A) l-adic Tate module of A
T̂ (A) Adelic Tate module of A
M

Θ(w,w′) algebraic Kronecker Theta function (5.8)
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